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Abstract
Advancing technology changes skill demands: for human expertise to remain valuable
in the labor market, skill supply must adjust. We study how new digital technology
reshapes skill acquisition, and the resulting impacts on workers’ careers. We construct
a novel database of legally binding training curricula and updates therein spanning the
near universe of vocational training in Germany over five decades, and link curriculum
updates to breakthrough technologies using Natural Language Processing techniques.
Our findings reveal that training adapts to technological advance by incorporating dig-
ital and social skills while reducing routine-intensive task content, mostly through new
skill emergence. Using administrative employer-employee data, we show that curricu-
lum updates help workers adapt to new skill demands, and earn higher wages compared
to workers with outdated skills. By contrast, older occupational incumbents face de-
clining wages, consistent with skill obsolescence. Firms respond by increasing capital
investments when exposed to workers with updated skills. Our findings highlight the
role of within-occupation skill adjustments in meeting evolving labor market demands
for non-college educated workers.
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1 Introduction

Advancing technology transforms the labor market by altering skill demands, thereby chang-
ing jobs’ task content and wages. Both the automation of existing work and the generation of
new labor-using tasks require workers to adapt. An expansive literature on the race between
education and technology (Tinbergen, 1975) shows that the demand for skill has risen—
particularly with the advent of digital technologies—and that rising educational attainment
has been pivotal in adapting to increased skill demands over the past century, termed The
Human Capital Century by Goldin and Katz (2008).

Much recent work on this race has focused on the demand side, providing a better un-
derstanding of which worker tasks have been automated, which have been complemented by
advancing technology, and how specific technologies such as computers, robotics, or AI, affect
labor demand.1 By contrast, the recent literature is comparatively silent on the supply side
of the canonical race, including on the content of human capital adjustments beyond years
of schooling or (college) degree attainment (Deming, 2023). However, changing demands for
specific skills, including social skills and IT skills (Deming, 2017; Deming and Kahn, 2018;
Aghion et al., 2023), and transformed skill requirements within jobs (Spitz-Oener, 2006;
Atalay et al., 2020) are quite distinct from increased educational requirements.

In this paper, we study how occupational skill supply adapts through changes in educa-
tional content, highlighting a potentially important mechanism by which the labor market
responds to changing skill demands. Such educational adjustments may allow workers to
work with new technologies relevant for their jobs, acquire complementary competences such
as social skills, and forego training for tasks that are being automated. These adjustments
suggest that technological advancements not only lead to worker skill obsolescence but also
create new demands for expertise, enabling labor to enhance its value without necessitating
additional years of education.

We leverage detailed curricula covering close to all vocational training in Germany over
1971–2021, linked with administrative labor market records, to answer three core questions.
First, has advancing technology spurred updates in curriculum content over the past 50
years? Second, which specific skill changes are embodied in curriculum updates? And
third, do skill updates impact workers’ labor market outcomes, improving outcomes for labor

1For example, Acemoglu and Restrepo (2019); Acemoglu et al. (2020); Acemoglu and Restrepo (2022);
Acemoglu et al. (2022); Webb (2020); Bessen et al. (2023); Hémous and Olsen (2022); Kogan et al. (2023);
Autor et al. (2024); Bonfiglioli et al. (2024).

1



market entrants, reflecting augmented expertise; while inducing skill obsolescence among
older occupational incumbents?

Vocational training in Germany is a full-time educational program following high-school,
and is a particularly relevant setting to study the race between education and technology,
for three reasons. First, the 1969 Vocational Training Act ensures that vocational training
is codified in nationally standardized curricula that are regularly updated through an insti-
tutionalized process, discussed in more detail below. This institutional setting allows us to
observe detailed educational content updates in a comprehensive and representative manner
over half a century.

Second, as shown in Figure 1, vocationally trained workers are over-represented in the
middle of the wage distribution, where many jobs have been strongly impacted by technology,
and especially automation, over the past decades (Autor et al., 2006; Goos and Manning,
2007; Goos et al., 2014). Understanding how formal skill acquisition for these non-college ed-
ucated workers adapts in response to technological change is a first-order question, especially
as the labor market fortunes of non-college educated workers have generally deteriorated rel-
ative to their college-educated counterparts.

Third, a large share of the German workforce has obtained vocational training (around
65%, compared to 9% with a university degree).2 These programs prepare workers for a wide
range of jobs in both manufacturing and services, including administrative, logistics, and
retail jobs and various technical occupations in automotive industries, in machine-building
and -operating, and in electrical engineering. By studying vocational training over 1971–
2021, we therefore cover skill acquisition for a broad swath of the German labor market.

We employ two main empirical strategies to answer our research questions. First, to iden-
tify the effect of technological change on educational updates and content, we link vocational
training curricula to lagged patents with Natural Language Processing (NLP) techniques,
using a method pioneered by Seegmiller et al. (2023). To establish a causal connection,
we use so-called breakthrough technologies (Kelly et al., 2021), as these reflect discontinu-
ous changes in the innovation space that are plausibly exogenous to subsequent changes in
skill supply. We also use NLP techniques to analyze and classify skill content embodied in
these curriculum updates. Second, to identify the causal effect of curriculum updates on
individual worker outcomes, we use a stacked difference-in-differences (DiD) model leverag-
ing curriculum update events. This approach compares cohorts of workers with old skills

2Averages over 1975–2017, based on the Sample of Integrated Labor Market Biographies (SIAB).
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and cohorts of workers with new skills in an occupation that witnessed curriculum change
to corresponding cohorts in occupations that did not witness curriculum change over the
same time window. This identification strategy rests on the discontinuity of the change in
skill supply, whereas potentially confounding factors such as changing skill demand plausibly
evolve more smoothly over time. We also estimate DiD models exploiting curriculum up-
dates for occupational incumbents to study skill obsolescence, and for firms to study impacts
on capital investments.

We find that technological advances spur updates in vocational training: technology-
exposed occupations are more likely to receive curriculum updates, and these updates also
arrive more rapidly. A standard deviation increase in technology exposure raises the annual
probability of curriculum updates by 1.2 percentage points, which is large compared to the
average annual probability of curriculum updates of 3.8%. Moreover, curriculum content
evolves toward less routine intensive tasks, and higher use of digital technology as well as
social skills— especially among technology-exposed occupations—consistent with workers
acquiring skills that are more complementary to advancing technology. Importantly, these
changes are largely driven by the addition of new skills in training programs, rather than
the removal of existing ones.

Using administrative employer-employee data, we show that educational updating helps
labor market entrants adjust to changing skill demands, leading to higher earnings. The
wage returns of curriculum updates are up to 3% over the first five years after training
graduation, a sizable effect since we compare entrants trained for the same occupation but
with an updated curriculum. Wage returns to curriculum updates are driven by technology-
exposed occupations, suggesting that revised training content helps workers to keep pace
with technological change— and these effects are not accounted for by changes in selection
into updated training programs. Conversely, we find evidence of skill obsolescence among
incumbent workers in occupations with skill updates, compared to incumbents in occupations
without such updates. The wages of older occupational incumbents decline with entry of
new-skilled workers, and younger incumbents are more likely to switch occupations and move
to lower-paying firms. Reflecting the impact of technological change, firms increase capital
investments when exposed to workers trained in updated curricula, particularly those with
more technological content.

Our study contributes to several economic literatures. A first considers how technolo-
gies and institutions shape the long-run evolution of skill demands, occupational structure,
and wage inequality (e.g., Goldin and Margo 1992; Katz and Murphy 1992; DiNardo et al.
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1996; Acemoglu 1998; Autor et al. 1998; Katz and Autor 1999; Krusell et al. 2000; Card and
Lemieux 2001; Goldin and Katz 2008; Autor et al. 2020; Acemoglu and Autor 2011; Ace-
moglu and Restrepo 2018, 2019; Autor et al. 2024). A key insight of this literature is that
technological advances change the skills demanded in the labor market, both by displacing
labor from existing tasks through automation and by creating new labor-using ones. We
contribute by showing how skill acquisition in educational systems responds to technological
advances, and the roles played by new skill emergence and skill obsolescence.

Second, we contribute to a literature studying within-occupational task change. This
literature documents how tasks performed within occupations are transformed as a result of
technology— and that such within-occupational shifts are at least as important as shifts in
the occupational structure in accounting for the aggregate change in task demands (Spitz-
Oener, 2006; Atack et al., 2019). Recently, this literature has advanced by identifying changes
in skill demands along multidimensional measures of human capital, e.g. based on online job
vacancies (Atalay et al., 2020; Deming and Noray, 2020; Acemoglu et al., 2022; Deming,
2023), and on measures of new tasks within occupations (Autor et al., 2024). While these
papers focus on the demand side, we contribute by developing comparable multidimensional
measures of human capital on the labor supply side, and by studying technological change
as a specific driver of changes in within-occupational skill supply. We also document that
these supply-side adjustments play an important role for workers’ labor market outcomes.

Third, our work relates to a literature studying skill obsolescence in the context of tech-
nological change (Neuman and Weiss, 1995; MacDonald and Weisbach, 2004; Janssen and
Mohrenweiser, 2018; Deming and Noray, 2020; Fillmore and Hall, 2021; Kogan et al., 2023).
Most closely related within this literature is the paper by Janssen and Mohrenweiser (2018),
who pioneer a case study of a German vocational curriculum update for a single occupa-
tion in response to the adoption of Computerized Numerically Controlled (CNC) machinery.
They show that this update deteriorated labor market outcomes for older incumbent workers
in the occupation, indicating skill obsolescence. We contribute by considering close to all
curriculum changes and all (patented) technology by linking vocational curricula to patents
with Natural Language Processing techniques; by documenting how educational content has
changed over the past five decades; and by identifying the causal effect of technological
change on educational content. Compared to the broader skill obsolescence literature, our
contributions are twofold. First, we identify specific educational updates and their skill con-
tent, and second, beyond studying skill obsolescence among (occupational) incumbents, we
identify the gains to workers with up-to-date skills. The emergence of new, valuable exper-
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tise does not necessarily follow from skill obsolescence. Just as task displacement can occur
without the creation of new tasks, incumbent workers’ skills may become obsolete without
corresponding benefits to new cohorts of workers, for example if the expertise of previous
workers is now embodied in new technologies.

A fourth emerging literature studies changes in educational content, including how the
composition of higher education programs responds to (local) labor demand (Conzelmann
et al., 2023). Boustan et al. (2022) document that universities offer more CNC degrees
following adoption of this technology. Biasi and Ma (2023) measure the distance between
university curricula and the academic knowledge frontier, highlighting that students from
schools with larger knowledge gaps have worse outcomes. A small subset of papers in this
literature also specifically consider curriculum updates. Hermo et al. (2022) describe an
increasing emphasis on reasoning as compared to knowledge in Swedish primary school cur-
ricula, and Light (2024) shows U.S. university degree content mostly adapts through newly
created courses. We contribute by studying the effects of new technologies embedded in
patents on curriculum content over five decades, and by identifying the causal impacts of
these updates on worker outcomes.

Our paper also relates to a broader literature analyzing the content of vocational training
systems (Eggenberger et al., 2017, 2018; Rupietta and Backes-Gellner, 2019; Kiener et al.,
2022, 2023; Langer and Wiederhold, 2023; Cnossen et al., 2023; Schultheiss and Backes-
Gellner, 2024; Buehler et al., 2025). This literature documents and categorizes skills con-
tained in these curricula, and their (changing) returns in the labor market. Our paper
contributes by considering curriculum updates, how these relate to advancing technology,
and their causal impact on worker outcomes.

The remainder of this paper is structured as follows. The next section outlines our data
and measurement. Section 3 tests whether technological advances spur curriculum change,
and documents the skill content of curriculum updates. Section 4 examines the labor market
impacts of updates in vocational training content for individual workers, and Section 5
studies impacts on firm investments. Section 6 concludes.

2 Data and measurement

We rely on three main data sources. The first two are training curricula and patent texts,
which we link using Natural Language Processing (NLP) techniques. We describe these
data sources below. The third are administrative data on firms and their workers, which we
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describe in Section 4 when we turn to the labor market impacts of curriculum updates.

2.1 Training occupations and training curricula

In Germany, vocational training typically combines classroom schooling (1–2 days a week)
with on-the-job training at a firm (3–4 days a week), known as the dual system. This
full-time training is usually undertaken after high school and typically lasts three years,
with a minority of apprenticeships taking two years or three and a half years. Both the
final written and practical exam are not conducted by the training company itself, but by
an external board of examiners, which consists in equal parts of representatives from em-
ployer associations, employee associations, and vocational school teachers. Following the
1969 Vocational Training Act (Bundestag, 1969), virtually all dual training is codified in
state-approved and nationally standardized training curricula, which are regularly revised
by means of a well-defined and institutionalized process.3 Updates of training curricula are
initiated either by the employers (through individual firms, employer associations, or pro-
fessional organizations, so-called ‘Kammern’), the employees (through labor unions), or the
Federal Institute for Vocational Education and Training (Bundesinstitut für Berufsbildung,
BIBB).4 Typically, it takes around one year after an update has been suggested by one of
these partners to be agreed upon (Bundesinstitut für Berufsbildung, 2023), and another six
months for it to be reflected in law. This implies that curriculum updates arrive around
1.5 years after the update was first initiated. For some updates, firms are granted a grace
period before they must comply with the new curriculum, while the majority of curricula
take effect at the start of the next training year.5 While this specific institutional setting
allows us to observe curriculum updates in a comprehensive way over 50 years, changes in
educational content are common in other settings as well: in Appendix C we use U.S. Clas-

3Vocational training at vocational schools only, including training in health, education and social services, and
vocational training to become a civil servant are not delivered in the dual system subject to the Vocational
Training Act and therefore not included in our analyses. Overall, approximately 70% of all vocational
trainees are trained within the dual system subject to the Vocational Training Act (BIBB, 2020).

4Curricula for the part of the dual training taught in vocational schools are developed in close coordination
with the on-the-job training curricula that we study, and therefore arguably feature closely corresponding
changes (Kultusministerkonferenz, 2021).

5In our data, this concerns 33 curriculum updates, i.e. 7% of observed updates, for which a grace period of,
on average, 15 months is granted. For example, the new curriculum for Industrial metal occupations took
effect in August 1987, but apprenticeships that began before December 1989 were still allowed to follow the
old curriculum. Similarly, for the updated curriculum of Process mechanic for coating technology, which
took effect in August 1999, a grace period was granted until December 1999.
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sification of Instructional Programs (CIP) data to document widespread emergence of new
degree programs over the past three decades.

Our analysis focuses on occupations where a vocational training curriculum is observed
(‘training occupations’).6 We build a training occupation by year panel over 1971–2021 which
contains training occupations with their occupation classification code and an indicator of
the occurrence of a curriculum change. The panel is unbalanced as training occupations only
enter the panel once the first curriculum is observed post 1969 and need not exist over the
entire time interval.

To obtain training curricula and their changes, we proceed in three steps. First, we collect
the curricula of the vocational training programs in Germany by web-scraping the archives
of the Federal Law Gazette.7 These exist from 1971 onward, and specify the obligations and
rights of both trainees and trainers for most dual vocational training programs. In total,
we obtain 756 unique training curricula, characterizing 492 training occupations, defined as
unique occupation titles.8

The Vocational Training Act requires that all training curricula include five elements:
(1) the title of the training occupation, (2) the duration of the training, (3) the skills and
knowledge to be acquired during the program, (4) a plan outlining the sequence and descrip-
tion of these skills and knowledge in great detail (called the training framework curriculum),
and (5) the requirements for passing the final examination. The curriculum text is very
elaborate, spread over 11.1 pages on average. We machine-translate curricula from German
to English.9

Second, we match these curricula to a separate database containing entries for all curric-
ula changes (‘Index of Recognized Training Occupations’, or Verzeichnis der Anerkannten
Ausbildungsberufe) based on the training occupation title and the year of issue. This allows
us to link preceding training occupations to current and future training occupations in cases
where the occupational title changes. We match the large majority of data: for 48 curriculum
changes mentioned in the registers, we do not observe the curriculum text; and 28 scraped
curricula cannot be matched to the register containing recognized training occupations.

6While not all workers employed in these occupations hold a vocational training diploma, on average 78%
do. Averages over 1975–2017, based on the Sample of Integrated Labor Market Biographies (SIAB).

7Bundesgesetzblatt, archives available online at https://www.bgbl.de/.
8Several documents contain training programs for more than one occupation: we split these to obtain separate
occupational curricula.

9We use GoogleTranslator from the Python package deep translator.
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Third, we match the training occupation title to official occupation codes from the 2010
German classification system (Klassifikation der Berufe, KldB) at the 5-digit level based on
a crosswalk provided by the BIBB (Lohmüller, 2021).10 The 492 training occupations can
be linked to 237 distinct KldB occupations (henceforth: occupations).11

We derive different indicators from the curriculum changes at the training occupation by
year level for empirical analyses. Our baseline indicator is a binary variable equal to 1 if
the training curriculum was changed in a given year, and 0 otherwise. We further categorize
these curriculum updates into four types: updates in curriculum content without changes in
the number or names of training occupations; updates in curriculum content accompanied
by a change in the name of the training occupation; updates in curriculum content accom-
panied by the aggregation of multiple training occupations into one (i.e. merging of existing
occupational training programs into fewer training programs); and updates in curriculum
content accompanied by the segregation of a training occupation (i.e. splitting up of an oc-
cupational training program into several training programs).12 We additionally characterize
the skill content of the curriculum change by analyzing changes in textual descriptions, as
described in Section 3.2.

To contextualize these jobs in the broader German labor market, Figure 2 shows separate
boxplots of wages for training occupations and for all other occupations. The median real
training occupational wage is around 99 euros daily, slightly below the 109 euros observed in
other jobs. While daily wages in training occupations vary meaningfully, with an interquartile
range between 83 to 107 euros; the interquartile range for other jobs is significantly wider,
between 93 and 167 euros. This highlights that training occupations are middle- to low-

10The assignment of training occupations to KldB occupations is not always one to one. For the analyses
in Section 3 this is not an issue as analyses are at the level of training occupations and KldB occupations
are only used for clustering or fixed effects. Here, when one training occupation is linked to multiple
KldB occupations, we assign the KldB occupation that is assigned to the training occupation without
specialization (ohne Fachrichtung or Monoberuf ). For later analyses at the KldB occupation level, we
employ a different approach, discussed in Section 4.

11The number is lower for two reasons. First, whenever a training occupation receives a new occupation title,
we classify it as a new training occupation while the time-consistent KldB occupation does not change.
Second, the match between training and occupations is not unambiguous such that in some cases, one
KldB occupation covers multiple training occupations.

12The categories are not mutually exclusive: a training occupation may be split into several successors, each
of which is an aggregation of multiple predecessors. Likewise, both aggregations and segregations may be
accompanied by changes in the name of the training occupation. Hence, the sum of the number of pure
content updates, and those accompanied by renamings, aggregations, or segregations is larger than the
total number of changes.
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paid jobs compared to other occupations in the German economy. It is worth noting that
collective bargaining coverage in Germany is around 40%, not particularly high compared
to some other European countries like France or Italy, where it is closer to universal (Jäger
et al., 2025).

Table 1 lists the ten largest occupations with a training curriculum in our sample, based
on employment counts. This includes Office clerks and secretaries, which have 11.2% share in
total employment on average over the period; Occupations in warehousing and logistics; Oc-
cupations in machine-building and -operating; Retail sales occupations; Professional drivers
(cargo trucks); and Technical occupations in automotive industries, each of which has 3 to
4% shares in total employment. While daily real wages vary between 152 euros for Occupa-
tions in electrical engineering and 70 euros for Retail sales occupations, nine out of ten of
these occupations have experienced decreasing employment shares, with the strongest decline
observed for Office clerks and secretaries (6 percentage points over 1975–2017), consistent
with job polarization patterns documented for Germany (Goos et al., 2014).

2.2 Descriptives on training curriculum updates

To illustrate the nature of training curricula and their updates, Figures 3 through 6 show
machine-translated excerpts of training curricula for two occupations, Process control elec-
tronics technicians (from the 1992 curriculum and its 2003 updated version) and Industrial
clerks (from the 1978 curriculum and its 2002 updated version). These examples highlight
both the specificity of these curricula and substantive changes over time.

Figure 3 shows that in 1992, Process control electronics technician apprentices had to
learn to manufacture mechanical parts and make mechanical connections. Each of these
skills is specified in further detail, where one part of the latter is “making connections using
screws, nuts and washers and secure them with safety elements, in particular spring washers,
toothed lock washers and paint”. Figure 4 shows excerpts illustrating changes in the 2003
update. Apprentices in the same training occupation (now named Electronics technician for
automation technology) must learn to install and configure IT systems and advise and sup-
port customers. The former is further detailed as, among other things, “selecting hardware
and software components”, “installing and configuring operating systems and applications”,
and “integrating IT systems into networks”. Further, “solving problems in a team” is now
mentioned among operational and technical communication skills.

The training for Industrial clerks similarly shows important changes in its 2002 curricu-
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lum (Figure 6) relative to its 1978 incarnation (Figure 5). In 1978, purchasing skills are
described as “compiling, evaluating and supplementing purchasing documents”, “processing
offers”, and “processing orders”. In the 2002 update, specific reference is made to electronic
procurement and electronic commerce; as well as using “standard software and company-
specific software” and “entering data and information”. There is also emphasis on teamwork,
planning, and organization.

Table 2 provides descriptives on training curriculum changes over 1971–2021. 3.8% of the
11,843 training occupation-year observations have experienced a curriculum update over the
past five decades, with the majority only involving a content update (0.021/0.038 × 100 =
55%). 40% (= 0.015/0.038 × 100) of updates additionally involve a renaming of the training
occupation. Around a quarter of changes are accompanied by aggregations of preexisting
training occupations. Only 33 training curricula involve occupational segregations, compris-
ing 7% of all curriculum updates.

Figure 7 shows the total number of curriculum updates over time, i.e. the number of
new curricula conditional on observing the training occupations’ preceding curriculum, us-
ing five-year moving averages. There is a strong rise in curriculum change since the early
1990s, peaking around 2004 when 22 curricula were updated (corresponding to around 7% of
training occupations). This increase in curriculum change in part reflects the rising number
of observed preceding curricula, as seen in Figure 8. In our analyses, we will not exploit
this time series variation because it may also capture changing time investments in curricu-
lum updating for political or administrative reasons: instead, we leverage the distribution of
changes across training occupations within a given year.

Table 3 shows the most and least changed training occupations in our data, as measured
by the average number of curriculum changes within that occupation per year. Examples
of occupations with frequent curriculum updates are Flexographers, Electronics technicians
for automation technology, Industrial mechanics, Electricians, Retail clerks, Automobile me-
chanics, and Electronics technicians for aeronautical systems. By contrast, among occupa-
tions which are updated at some point, the least frequently updated ones include Gardeners,
Foundation engineering specialists, Asphalt builders, Civil engineers, and Industrial insu-
lators. There are also several occupations which have seen no changes to their training
curricula over our time window: this includes Brass instrument makers, Delivery drivers,
Floor layers, Glass blowers, Hotel clerks, Makeup artists, and Stage painters and sculptors.

The two panels of Figure 9 show the distribution of curriculum updates more broadly,
for initial training occupation observations. Panel A plots the distribution of years until a
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curriculum is changed, highlighting that this varies widely across curricula: some are updated
within years with others changed only after two or more decades. On average, a curriculum
is updated after 15.3 years, as seen from the bottom row of Table 2. The distribution
of curriculum change varies substantially across broad occupation groups, shown in panel
B of Figure 9: the curricula for IT and scientific service occupations are updated with
the highest regularity, followed by Business service occupations, Production occupations,
and Other commercial service occupations. Personal service occupations receive the least
frequent updates on average, though there is substantial variation within each of the five
broad groups.

2.3 Measuring technology exposure

We use U.S. utility patents as a measure of the flow of technological innovation, following
a large literature (e.g. see Griliches 1981; Jaffe et al. 1993; Hall et al. 2001): patents are a
detailed measure of the flow of technological innovation, despite not capturing all innovations,
such as those less suited to protection as intellectual property.

Rather than using all U.S. utility patents, we use the subset which Kelly et al. (2021)
classify as technological breakthroughs.13 These breakthroughs are both novel (i.e. distinct
from previous patents) and influential for subsequent innovation (i.e. similar to later patents),
empirically operationalized as the top 10% of patents by year in terms of forward-to-backward
textual similarity. Further, we lag breakthroughs by 20–25 years relative to our 1971–2021
curriculum data, implying we consider technological breakthroughs occurring over 1946–
2001.

Using lagged breakthroughs as opposed to all patents serves two purposes. First, break-
throughs are the most transformative technologies (Kelly et al., 2021), and therefore likely to
be important for workers. This should result in more signal in our technology measure. Sec-
ond, identifying the impact of innovation on curriculum updates requires exogenous techno-
logical shifts. Reverse causality is a concern: new technology could also emerge in response to
contemporaneous shifts in skill supply as reflected by curriculum change. Moreover, contem-
poraneous demand shifts could drive both innovation and changes in skill supply, introducing
simultaneity bias. Using technological breakthroughs helps address these concerns because

13Mayor technologies are patented in both the U.S. and in Germany: we use U.S. patents so that we can
use Kelly et al. (2021)’s established classification of technological breakthroughs. From 1976 onward, we
observe the nationality of inventors: 2.7% of U.S. breakthrough patents are held by German inventors.
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they represent unexpected and discontinuous changes in innovation while being predictive of
subsequent patenting flows (see Autor et al. (2024) who developed this identification strategy
and provide empirical evidence). Further, lagging breakthroughs by twenty years allows for
a delay between patenting of these novel technologies and subsequent follow-on innovation
as well as implementation in the workplace—below, we explore the lag structure using local
projections (Jordà, 2005).

Figure 10 shows the distribution of breakthrough patents across eleven broad technology
classes as defined by Kelly et al. (2021) over time. We use breakthroughs over the 1946–2001
period, which has seen the largest expansion of breakthrough patenting in the technology
class “Instruments & Information”, capturing digital technologies. Towards the end of the
period, these technologies comprise the majority of patenting, reflecting the Digital Revolu-
tion.14 In our baseline models we focus on digital technologies, though we show robustness
using breakthrough patenting activity across all technology classes.

We measure each training occupation’s technology exposure by linking each curriculum
in year t to the textual content of breakthrough patents emerging over [t−25; t−20]. We use
the entire text of both machine-translated training curricula as well as patents.15 We follow
Seegmiller et al. (2023)’s linking method and first retain verbs and nouns excluding standard
stopwords plus a small number of source-specific stopwords to compute Term-Frequency
Inverse-Document-Frequency (TD-IDF) weighted averages of pre-trained word embedding
vectors provided by Pennington et al. (2014). We then obtain the cosine similarity between
every patent-curriculum pair, and normalize these similarity scores by subtracting the median
similarity for each patent (as in Autor et al. 2024) to avoid assigning low similarities to
patents using more technical language. Appendix Table B2 shows the most similar digital
breakthrough patent for several example curricula, revealing sensible linkages. For example,
“Self-gauging sensor assembly” (a sensor assembly for generating signals in response to the
rotation of a body) is the most similar patent for the curriculum of Body and vehicle builders;
“Process for making a prosthetic implant” is the most similar patent for the curriculum of
Dental technicians; and “Computer travel planning system” is the most similar patent for
the curriculum of Travel agents. Finally, we retain the 15% most similar patent-curriculum
pairs, and sum them for each curriculum: the resulting occupational patent count is our

142.1% of U.S. digital breakthrough patents since 1976 are held by German inventors.
15Patent texts are obtained from Autor et al. (2024). Appendix Table B1 shows the number of tokens

contained in curriculum texts used for matching to patent texts—the average curriculum has 34,374 tokens.
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measure of technology exposure. We perform this procedure separately for all patents and
for the subset of digital patents, where the latter measure is our baseline.

Training occupations are very differently exposed to technological change embedded in
patents, as illustrated by the distribution of the number of linked digital breakthrough
patents across occupations in panel A of Figure 11. We will exploit occupational variation
in technology exposure within years to study technology’s impact on educational content of
training curricula. Panel B of this figure reports the number of linked patents separately
for each of the five broad occupation groups. Technology exposure is highest for IT and
scientific service occupations, followed by Production occupations, and lower for Other com-
mercial service occupations, Business service occupations occupations, and Personal service
occupations.

Appendix Figure A1 highlights that overall and digital technology exposure are strongly
positively correlated in both halves of our 50-year period. Examples of highly exposed jobs for
both digital and overall technology are Electrical machine builders, Mechanical engineering
mechanics, and Body and vehicle builders. Least exposed on both dimensions are Funeral
workers, Housekeepers, Clothes tailors, and Barbers. However, there are some differences,
with for example Industrial clerks, Photographers, and Film and video editors more exposed
to digital than overall technology; and the reverse being true for Glassmakers, Distillers, and
Orthopedic technology mechanics.

Table 4 provides further examples of the most and least digital technology-exposed train-
ing curricula in our data. Highly exposed curricula include various types of Electronics
technicians (for machines and drive technology, for industrial engineering, for devices and
systems, for building and infrastructure systems, for information and system technology, and
for automation technology), industrial mechanics, plant mechanics, and tool mechanics, and
cutting machine operators. Jobs with a low exposure to digital technology include various
service occupations such as Factory firemen, Ice cream specialists, and Bespoke shoemakers;
as well as production occupations like Leather production and tanning technology specialists,
Candle and wax makers, Confectionery technologists, Wine technologists, and Concrete and
terrazzo manufacturers. Appendix Table B4 shows the most and least exposed occupations
separately for each of the five broad occupational groups. For example, among business
service occupations, Media designers are the most exposed while Personnel services clerks
are the least exposed.
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3 Does technology exposure spur curriculum change?

This section empirically assesses whether exposure to technology spurs curriculum change,
by considering (1) curriculum updates, and (2) the skill content of these updates. We take
up the effects of curriculum updates on labor market outcomes in Section 4.

3.1 Curriculum updates

We start by considering the panel of training occupation by year observations and ask
whether exposure to digital technology predicts curriculum updates:

1(Update)kjt = βTechk,[t−25;t−20] + γt + θj,τ + ζJ(×t) + δ
Ejt0
Et0

+ εkjt (1)

where k indexes curricula, j training occupations, t calendar years, and τ the first year a
curriculum is observed. The dependent variable is a dummy for a training occupation’s
curriculum updating over time, set to zero for years where the curriculum does not undergo
a change. The independent variable of interest is Techk,[t−25;t−20], measuring each training
occupation’s exposure to digital technology, as revealed by the logarithm of the number
of textually linked digital breakthrough patents over a five-year window 20 years prior.
Calendar year fixed effects (γt) absorb year-specific variation in curriculum updates (for
example for institutional reasons) and in the number of patent linkages. We control for
the year of the training occupations’ initial curriculum (θj,τ ) in five year bins since training
occupations j enter the dataset at different points in time. In some specifications, we further
add broad occupation or broad occupation by year fixed effects (ζJ(×t)). Lastly, we add
occupations’ initial employment size in 1975 (Ejt0

Et0
) to control for the possibility that larger

occupations are more likely to receive curriculum updates.16 Standard errors are clustered
by occupation (259 clusters). We expect β > 0, reflecting that training occupations that are
more exposed to digital technology are more likely to experience a curriculum update.

Table 5 shows estimates of equation (1), with the top panel showing unweighted models
and the bottom one models weighted by initial occupational employment shares. Across
all specifications, we find technology exposure spurs curriculum updates: a doubling in the
exposure increases the probability that a curriculum is updated by 0.42–0.50 percentage
points in the unweighted models, and 0.80–0.84 percentage points in the weighted models.

16These occupations are not exactly one-to-one with training occupations as outlined in footnote 10.
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Since the estimates are robust to controlling for broad occupation fixed effects (columns 2
and 6) and broad occupation by year fixed effects (columns 3 and 7), technology exposure
also spurs curriculum updates within the five broad occupation groups. Further, results are
robust to controlling for occupational employment size (columns 4 and 8), addressing the
concern that larger occupations may be more likely to receive updates.17

As reported in Appendix Table B3, digital technology exposure has an unweighted stan-
dard deviation of 2.58 in our panel data. This implies that a standard deviation increase
in technology exposure increases the annual probability of a curriculum update by 1.24 per-
centage points (0.48×2.58, using the estimate from column 4). This effect is sizable since on
average the annual probability of curriculum updates is 3.8% (shown in Table 2) When us-
ing weighted models, we find slightly larger effect sizes: the effect on the curriculum update
probability of a standard deviation increase in technology exposure is 2.17 percentage points
(0.83 × 2.61, using the estimate from column 8), compared to a weighted mean of 4.1%.18

As a complement to the yearly panel used in equation (1), we use the dataset of initial
curriculum observations—i.e. the first time a curriculum is observed. This allows us to
consider how many years it takes for the curriculum to be updated for the set of updated
curricula:

Years until updatekj(τ)|{1(Update)kj = 1} = βTechk,[τ−25;τ−20] +θj,τ +ζJ +δ
Ejt0
Et0

+εkj(τ) (2)

where k indexes curricula, j training occupations, and τ the first year a curriculum is ob-
served. The dependent variable is the number of years it takes for a curriculum to be updated,
conditional on an update being observed at some point in time.19 The independent variable
of interest is each curriculum’s initial technology exposure, defined as before. We control for
the year of the initial curriculum in five year bins (θj,τ ) and, in some specifications, broad
occupation fixed effects (ζJ) and initial occupational employment size in 1975 (Ejt0

Et0
).

Compared to the first model, this second model informs on the intensive margin only:
given that a curriculum is updated, does the number of years it takes for the update to occur

17Our findings are unaffected by removing patents held by German inventors.
18Results are also robust to restricting these models to only occupations which are updated at some point

in time; and to excluding potentially ‘dying’ occupations, defined as those with a reduction in the number
of training contracts by more than half over time.

19For curricula merging into more than one training occupation in different years, we use the time until the
earliest change.
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depend on technology exposure? Here, we expect β < 0, reflecting that technology-exposed
occupations are updated more rapidly.

We find similar effects for the intensive margin compared to the overall effect. Intensive
margin estimates are reported in Table 6: conditional on a curriculum being updated, the
update occurs more rapidly for technology-exposed occupations. This is true in unweighted
(panel A) and weighted models (panel B), and robust to controlling for broad occupation
fixed effects and occupational employment size. For example, the unweighted model reported
in column 3 implies a doubling of technology exposure predicts the update arrives around
8 months (= −0.63 × 12 months) earlier. Scaled by the unweighted standard deviation of
digital technology exposure in these curriculum-level data (reported in Appendix Table B3),
this implies a one standard deviation increase in technology exposure reduces the time to
an update by around 1.6 years (−0.63 × 2.61). Since the average time to curriculum update
shown in Table 2 is 15.3 years (with a standard deviation of 7.8 years), this is a moderately-
sized effect. This suggests both the extensive margin (whether the curriculum is updated
at all) and intensive margin (how rapidly the update occurs) are impacted by technology
exposure, though the former is quantitatively more important.

In the Appendix, we document that these findings are robust to changes in how tech-
nology exposure is constructed. Appendix Table B6 shows that our results are similar and
remain statistically significant when only using the exam section of curricula to construct
patent links, although estimates are lower and less precise. The exam section arguably re-
flects the high-stakes component of the curriculum by describing skills that are subject to
examination, but it constitutes only around 11% of the curriculum text on average (see Ap-
pendix Table B1), reducing signal and thus the size and precision of the estimates. However,
our results indicate that when the skills tested in the exam are more exposed to digital
technology, the curriculum is more likely to be updated. Appendix Table B7 highlights that
updates also arrive more rapidly. Appendix Table B8 further shows that our results are
upheld but estimates are somewhat lower when using all breakthrough patents to construct
technology exposure rather than only patents related to digital technology. This suggests
that exposure to digital technology has stronger impacts on curriculum updates over this
period, but exposure to other technologies is not canceling out this effect by slowing down
the update process.

In Table 7, we further investigate whether these results are driven by any particular type
of curriculum change. Specifically, we consider the subset of curriculum changes which are
not accompanied by any occupational renaming, aggregation, or segregation; and the subsets
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of curriculum changes which are accompanied by each of these three additional changes.20

For each of these subsamples, we estimate equation (1) to test whether technology exposure
spurs curriculum change of these specific types. Table 7 shows that digital technology expo-
sure predicts curriculum updates not accompanied by any occupational change (panel A), as
well as curriculum updates accompanied by occupational renaming (panel B), occupational
aggregation (panel C), and occupational segregation (panel D). While technology exposure
significantly predicts all four types of curriculum updates, effect sizes differ somewhat: con-
sidering that the annual average probability of a content update without any accompanying
occupation change is higher (2.1%, see Table 2) than the probability of a content change
involving other occupational change (1.5% for renamings, 1.0% for aggregations and 0.3%
for segregations), the technology exposure effect is larger for curriculum updates involving
renamings, and even more sizable for updates involving aggregations and segregations. Ap-
pendix Table B9 shows similar results when weighting models by occupational employment
shares.

Appendix Figure A3 shows a Kaplan and Meier (1958) survival plot of curricula that
are updated at some point during our observation window, separately for high- and low-
technology exposed curricula. In our context, survival means the curriculum is not updated.
This methodology accounts for right-censoring. The plot confirms that high-technology
exposed curricula are updated more rapidly. For example, 15 years after a curriculum is first
observed, around 70% of the curricula with low technology exposure have survived (i.e. have
not yet been updated), versus only 50% for those with high technology exposure.

Finally, to explore the time lag between technology exposure and curriculum updates, we
use local projections (Jordà, 2005). We relate curriculum updates to technology exposure
and a set of controls in our panel of training occupation k by year t observations by estimating
the following model separately for time intervals of increasing length T :

1(Update)kj[t+T ] = βTechk,[t−5;t] + δ1Techk,[t−5;t−10] + γt + θj,τ + δ2
Ejt0
Et0

+ ζJ×t + εkjt (3)

The β coefficient in each regression captures how initial technology exposure impacts cur-
riculum updates over time windows of expanding length T . We control for prior technology
exposure (captured by a five-year lag, Techk,[t−5;t−10]) to avoid serial correlation in technology

20As noted in Section 2, renamings can co-occur with aggregations and/or segregations: in fact, around
85% of aggregations or segregations are accompanied by a renaming of the occupation. Aggregations and
segregations may also co-occur.
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exposure impacting our estimates. As before, we add year fixed effects (γt) and initial cur-
riculum year fixed effects (θj,τ ); and in the most saturated specification additionally control
for initial occupational employment size in 1975 (Ejt0

Et0
) and broad occupation by year fixed

effects (ζJ×t). We cluster standard errors by occupation.
Figure 12 plots these local projection estimates, showing that technology exposure does

not have an immediate effect on curriculum updates: β coefficients are very close to zero
for the first 15 years following technology exposure. From then on, coefficients increase and
become statistically significant around the 20-year mark, and remain higher for several years
before subsequently decreasing somewhat until year 25. While noisier, the time pattern of
exposure looks qualitatively similar when we use the most saturated model. These results
bolster confidence in the 20-year lag we use to define exposure to breakthrough technology.

3.2 Changes in curriculum content

We have so far considered the occurrence and speed of curriculum updates. We now turn
to changes in training content, which we expect to evolve towards tasks and skills which
are more complementary to digital technology. In particular, we examine whether workers
are using more digital technologies and social skills in their vocational training, are learning
fewer routine tasks, and more complex tasks. We also separate curriculum change into newly
added and removed terms, to distinguish between curricula where new skills have been added
and those where the skill set has dwindled.

3.2.1 Skill content change

To study changes in skill content, we estimate descriptive models of the following form:

skillkjt|{1(Update)kj} = βt + δj + εkjt, (4)

in the yearly panel where skillkjt is a skill measure of curriculum k for training occupation
j in year t. β is the coefficient on a linear timetrend t, capturing the average annual change
in skill content across curricula expressed in standard deviations. Since content changes by
definition occur at the intensive margin, we estimate equation (4) for the subset of updated
curricula, i.e. those which have potentially seen a change in their skill content. We control for
5-digit occupation fixed effects δj to take into account the different occupational composition
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of curricula over time.21 Standard errors are clustered by 5-digit occupation. Because of the
inclusion of detailed fixed effects, the first five years of data (when only a a handful of
curricula are updated) are dropped: the resulting regression models cover 1976–2021.

We also estimate equation (4) separately for training occupations with above-median and
at or below-median technology exposure, which we measure in the year a curriculum was
first observed to avoid including endogenous changes in curriculum content. We expect the
estimated β to be positive, and more so for occupations which are highly exposed to digital
technology.

We first estimate this model to document the emergence of keywords related to digi-
tal technology and to social skills in vocational training curricula. Increased mention of
digital technology in curricula would help further validate the importance of technological
advances for curriculum updates, and indicate workers are being trained to work with these
technologies. Social skills, on the other hand, are particularly complementary to digital tech-
nology (Deming, 2017): we therefore expect a rising importance of social skills in curricula,
especially when they are highly exposed to technology.

For digital technology use, we consider the occurrence of words starting with “digital”,
“software”, or “computer”. For social skills, we simply use the occurrence of words containing
“team”. Descriptives are reported in Appendix Table B5. We again estimate equation (4),
with the dependent variable the occurrence of these digital or team keywords, among updated
curricula.

The top panel of Figure 13 plots the average annual change in digital technology use
over time (controlling for 5-digit occupation fixed effects as before). In the three separate
sub-figures on this row, this use is measured as a dummy for the occurrence of digital
keywords in curriculum text; as the share of digital keywords in curriculum text; and as the
absolute number of digital keywords in curriculum text. For each of these measures, there
has been an increase in digital keywords over 1976–2021. Moreover, this increase is mostly
seen in curricula which are highly exposed to digital technology, increasing confidence in our
measure.

For example, digital keyword occurrence increases by 1.7 percentage points annually
among updated curricula, indicating that curriculum texts increasingly include one or more
digital keywords. The number of digital keywords as a share of all curriculum text tokens
increases by around 0.04 percentage points cumulatively over the entire period (0.009/1,000

21This results from the growing number of curricula, see Figure 8.
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× 100 percentage points annually × (2021−1976)): this is entirely driven by curricula which
are highly exposed to digital technology, for which the cumulative increase in the share
of digital keywords is 0.07 percentage points (0.015/1000 × 100 × (2021−1976)). Highly
technology-exposed curricula add close to 0.8 digital keyword annually to their curriculum
texts, with no change observed for less technology-exposed curricula.

The bottom panel of Figure 13 shows that social skills have become significantly more
important in vocational training curricula over time, as well, whether measured as the occur-
rence of team keywords, the share of team keywords in total curriculum text, or the absolute
number of these keywords. Across all three measures, the rising importance of social skills
is more pronounced in curricula highly exposed to digital technology, with around 0.4 such
keywords added annually on average for highly exposed curricula and no perceptible change
for less exposed curricula.22

We next consider how curriculum updates changes routine task content. Routine tasks
can be codified in digital technology (Autor et al. 2003), and a large literature documents
that digital technologies replace workers in these routine tasks (e.g. see Autor et al. 2003,
2006; Autor and Dorn 2013; Goos et al. 2014). This implies that vocational training curricula
should become less routine task intense over time if digital technology is an important driver
of curriculum updates. We also expect that the decline in routine task intensity of curricula
is more pronounced among highly technology-exposed occupations.

To measure the task content of training curricula, we again leverage NLP methods. In
particular, we use O*NET task descriptions for routine and non-routine task items to con-
struct TF-IDF-weighted vectors of word embeddings for five task measures: routine cognitive
tasks, routine manual tasks, non-routine manual tasks, non-routine analytic tasks, and non-
routine interpersonal tasks.23 We next measure cosine similarity of the training curricula
vectors (as constructed before) to these task vectors: a high cosine similarity between a
curriculum-task pair implies this curriculum is textually similar to this task.

We define routine task intensity by summing each curriculum’s cosine similarity to the
two routine tasks and then subtracting the sum of its similarities to the three non-routine
tasks. That is, the routine task intensity (RTI) for each training curriculum k is measured

22Appendix Figure A4 shows qualitatively similar results when not conditioning on curriculum change.
23We adopt Acemoglu and Autor (2011)’s O*NET items for the task measures whenever these items have

more detailed textual descriptions available— these descriptions are required for textual linking to patents.
Appendix Table B10 lists specific O*NET items used for each of the five task groups.
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as
RTIk = (CSk,RM + CSk,RC) − (CSk,NRM + CSk,NRA + CSk,NRI)

where CSk,i indicates the cosine similarity between curriculum k and task i, with i ∈
{RM, RC, NRA, NRM, NRI}. RM are routine manual tasks, RC routine cognitive tasks,
NRA non-routine analytic tasks, NRM non-routine manual tasks, and NRI non-routine in-
terpersonal tasks.

Appendix Table B11 shows the most and least routine intensive curricula. Among the
most routine intensive are curricula for Confectioners, Embroiderers, Glassmakers, Dress-
makers, Clothes tailors, Bakers, and Basket makers. By contrast, among the least routine
intensive curricula are those for Sports specialists, Personnel services clerks, Market and
social research specialists, Marketing communication clerks, and Event managers.24

We document how the routine task intensity of curricula evolves over time by estimating
(4), using curriculum RTI as the dependent variable, standardized to have a zero mean and
unit standard deviation across curricula.

Figure 14 plots estimates of β (and 95% confidence intervals), showing a clear downward
trend in the routine task intensity of vocational training curricula overall. Annually, routine
task intensity decreases by 0.041 standard deviations, amounting to 1.8 standard deviations
cumulatively over 1976–2021. Further, this trend is more pronounced for more technology-
exposed occupations, where the routine intensity of curricula declines by 0.058 standard
deviations annually (i.e. 2.6 standard deviations cumulatively over 1976–2021), compared to
0.023 standard deviations annually (1.0 standard deviation cumulatively) for less technology-
exposed curricula. This implies that curriculum updates equip workers with training in less
routine-intensive tasks, especially when these curricula train for occupations that are highly
exposed to digital technologies.

These trends are present in both production and service occupations, as Figure 14 also
reveals. While routine task intensity diminishes significantly across the board, the decline is
somewhat more pronounced among production occupations, which constitute 65% of training
curricula. However, the decline in routine intensity for technology-exposed curricula is very
similar in magnitude for both production and service occupation (although the estimate for

24Appendix Table B12 shows the most and least routine intensive curricula separately for each of the five
broad occupation groups. Appendix Figure A2 shows that routine task intensity is negatively correlated
with occupational employment growth, as expected.
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service occupations has a larger confidence interval).25,26

Lastly, in Appendix Figure A6, we show that curricula are also becoming more complex,
as defined by the share of curriculum words that are not in a typical eighth-grader’s vocab-
ulary (Dale and Chall, 1948). Autor and Thompson (2024) argue that this complexity score
is a measure of expertise, with more complex words reflecting skills or tasks that are less
easily performed by a broad group of workers, and therefore more expert. In practice, at the
curriculum level this complexity score is highly correlated with our measure of routine task
intensity (r = −0.62).

3.2.2 New skill emergence and skill removal

The changes in vocational skill content we document may arise from new skills being added
when curricula are updated (‘new skill emergence’), from pre-existing skills receiving a dif-
ferent weight (‘intensive margin skill changes’), or from being removed (‘skill removal’), or
a combination of these three.27 These may have different consequences for workers: simply
acquiring a narrower skill set than prior trainees (for example because some tasks can now
be automated), is less likely to be beneficial, relative to (also) acquiring new expertise.

To study this, we extract removed words and newly added words for each curriculum
update, with words including verbs and nouns as before.28

Figure 15 highlights that curriculum updates are characterized by substantial amounts of
word removal as well as new word addition. Across all five occupation groups, a curriculum
update involves some 150 distinct words being removed and around 180 distinct new words
being added (panel A), corresponding to around 35 to 40% of the total counts of distinct

25Appendix Figure A5 shows qualitatively similar results when not conditioning on curriculum change,
except that the differential decline in routine task intensity for technology-exposed occupations is driven
by production jobs only.

26Results are virtually identical when we additionally control for the number of tokens contained in each
curriculum, removing any potential mechanical association between the time trends in curriculum length
and in routine task intensity.

27Buehler et al. (2025) who study curriculum design by considering removed and added word shares in Swiss
curricula.

28In our baseline results presented here, we count as new any word that has not occurred in the previous
curriculum of the training occupation, and as removed any word not found in the newly updated curriculum.
Both measures are conditional on new and removed words being words found in a library of 466 thousand
English words from https://github.com/dwyl/english-words/blob/master/words_alpha.txt. Our
results are robust to only counting as new or removed the subset of words that are sufficiently distinct from
pre-existing and remaining words using a library of synonyms. Synonyms are identified using WordNet.
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curriculum word (panel B).29

Importantly, intensive margin skill changes, skill removal, and new skill emergence play
distinct roles in changing curriculum skill content. Figure 16 illustrates this for changes in
non-routine task intensity (panel A) and changes in complexity (panel B).

In panel A, the non-routine task intensity of the remaining part of the previous curriculum
is shown, and this is plotted against the non-routine task intensity of three separate com-
ponents of the new curriculum on the vertical axis. These three components are the words
present in both curricula (‘remaining words’), words removed in the curriculum update, and
words added in the curriculum update. Each observation is a curriculum update, and a
local polynomial plot is shown for each component. Observations lying on the 45-degree
line indicate a particular part of the new curriculum had the same routine task intensity as
the previous curriculum’s constant words, therefore not impacting the previous curriculum’s
routine task intensity. Observations lying above (below) the line are higher (lower) in non-
routine task intensity than the previous curriculum, shifting it to become less (more) routine
task intense. Panel B shows the same information but for the curriculum’s word complexity,
measured as the share of words that are categorized as complex.

Figure 16 shows that newly added words play an outsized role in increasing curriculum
non-routine task intensity, as well as in increasing curriculum complexity: the orange-colored
data lie most strongly above the 45-degree line in both panels. At all levels of previous non-
routine intensity and complexity of the previous curriculum, newly added words make the
updated curricula more non-routine intense and more complex: this effect is particularly
pronounced among curricula which were least non-routine intensive and the least complex
to start with. Skill change along the intensive margin, as represented by changing frequency
of remaining words; and skill removal play a role as well, though to a lesser extent. Intensive
margin skill change also tend to increase non-routine task intensity, especially for curricula
which are already relatively non-routine intensive; and are mostly neutral for curriculum
complexity. Skill removal has a neutral effect on non-routine task intensity on average, but
this differs across curriculum non-routine intensity. Removed words are more routine in-
tensive for the least non-routine curricula— therefore increasing non-routine task content.
However, for the most non-routine curricula, removed tasks actually make the curricula some-
what more routine intensive. All in all, the results in Figure 16 make clear that curriculum

29Appendix Figure A7 shows that word removal and addition are not strongly correlated across curriculum
updates, but do vary substantially.
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content change arise from both new skill emergence and skill removal: below, we directly test
whether the former reinstates labor’s expertise for new labor market entrants with updated
skills and the latter erodes it for occupational incumbents trained in the previous curriculum.

4 The labor market impacts of curriculum updates

The evidence above establishes that updates in vocational training curricula are spurred by
technological advances, and that this is accompanied by training content evolving towards
skills that are more complementary to digital technology, especially through the addition of
new skills. But does having these updated skills improve worker post-training labor market
outcomes? If changes in training allow workers to adjust to changing skill demands, we expect
workers with updated training to fare better in the labor market than their counterparts
who have been trained in the old curriculum. We also expect occupational incumbents to
experience skill obsolescence when workers with new skills enter their occupation. We explore
those implications here.

4.1 Sample construction

We use SIEED data (Berge et al., 2020)30 as our primary employer-employee dataset. SIEED
is a 1.5% random sample of German firms with linked employee information from administra-
tive employer-employee records provided by the Institute for Employment Research (IAB).
The data contain all workers who were ever employed by one of the firms in the sample.
For these workers, we observe their full employment biographies between 1975 and 2018,
including wages and occupation, as well as industry and location of the firms employing
them. While we cannot observe unemployment, we do observe non-employment, defined as
not being employed in a job with mandatory social security contributions.

We observe workers’ apprenticeship training spells, which is how we identify when workers
start and complete their training program, as well as which occupation they are trained in.
In combination with our curriculum dataset, this allows use to determine which curriculum
vintage each worker is trained in. For workers who completed their training before 1975, we
only observe that they hold a vocational training degree, without information on when it was

30SIEED data access was provided on-site at the Research Data Centre (FDZ) of the German Federal
Employment Agency at the Institute for Employment Research, and subsequently through remote data
access.
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obtained or in which occupation. Therefore, we restrict our sample to workers observed in
apprenticeship training from 1975 onward. This does not come at the loss of much data since
most curriculum change occurs from 1990 onward. We further restrict the sample to Western
Germany, because we only observe workers from Eastern Germany after 1992 and training
curricula before German reunification apply to West German apprentices only. Appendix D
provides further details on data construction.

Since training occupations do not correspond one-to-one with KldB occupational codes
provided in the SIEED data (as discussed in Section 2.1), we proceed as follows. For KldB
occupations (henceforth: occupations) comprised of multiple training occupations, we con-
sider the workers employed in that occupation as having updated skills when at least one of
the underlying training occupation curricula was updated. For training occupations linked
to multiple occupations, we classify workers employed in all associated occupations as having
updated skills.In the analyses below, we use data on both labor market entrants (Section
4.2) and occupational incumbents (Section 4.3).

For descriptives of occupational employment evolutions (including when using these as
a control variable) discussed in Section 2.1, we use SIAB data (Graf et al., 2023).31 These
data contain the same variables as the SIEED data but are a 2% random sample of indi-
viduals instead of firms. Given their representativeness at the worker rather than firm level,
these data are better suited for describing the occupational employment distribution. For
our main worker-level analysis, we rely on SIEED instead because it contains considerably
more individuals (5.6 million compared to 2.0 million in SIAB data) and spells (173 million
compared to 77 million in SIAB data).

4.2 Do curriculum updates reinstate worker expertise?

4.2.1 Empirical approach

To identify the causal impact of curriculum updates on post-training worker outcomes, we
leverage a difference-in-differences event study design comparing outcomes between cohorts
of workers with old skills (‘old-skilled workers’) and cohorts of workers with new skills (‘new-
skilled workers’) in occupations with training updates to worker outcomes in occupations
where no such update occurred around the same time. We consider labor market entrants,

31SIAB data access was provided on-site at the Research Data Centre of the German Federal Employment
Agency at the Institute for Employment Research, and subsequently through remote data access.
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who we define as vocationally trained workers in the first 5 years since the end of their
training. We estimate

Yijt =
∑

c=[−5,5]
βcUpdatej × Ic +

∑
c=[−5,5]

αcIc + δj + γt + µXit + εijt, (5)

where Yijt is an individual-level outcome for worker i who has been trained in occupation j

in year t.
Updatej is a treatment dummy indicating whether occupation j has seen an update of its

training curriculum during our time window: for each separate training update, this separates
our treatment group (workers trained in occupations with a curriculum change) from our
control group (workers trained in occupations without curriculum change).32 Specifically,
control group workers are those trained in occupations without curriculum updates in a
window of 5 years before and 5 years after the treatment occupation received an update. c

denotes cohorts of workers defined by the start year of their vocational training program
relative to the year of the potential curriculum change. We normalize c = 0 to represent
the first cohort trained in the new curriculum: as such, all treated cohorts c ≥ 0 have
been trained in the new curriculum, while treated cohorts c < 0 have been trained in the
old curriculum. We focus on worker cohorts whose training started in a window of 5 years
before and 5 years after the treatment occupation received an update, i.e. c = [−5, 5].

Treatment is staggered because different curricula are updated in different years, so
we cannot use the two-way fixed effect estimator to uncover the parameters of interest
(de Chaisemartin and D’Haultfoeuille, 2020; Sun and Abraham, 2021; Goodman-Bacon,
2021; Callaway and Sant’Anna, 2020): instead, we stack observations for different events
(i.e. different curriculum updates) following Cengiz et al. (2019).33 As a result of this stack-
ing, workers and occupations can occur multiple times in the data as controls; and occupa-
tions can also occur multiple times as treated, if their training curriculum is updated more
than once. Therefore i indexes individual workers by curriculum update (‘event’), j indexes
occupations by event, and t indexes calendar years by event.

32Treatment is defined by the occupational training workers have received, not the occupation of employment
after finalizing training. Since occupational choice is an outcome, we do not use it to define treatment,
but study this as a potential margin of adjustment.

33Baker et al. (2022) show that a stacked difference-in-differences setup recovers the true treatment effects
in the case of staggered timing, just as the Callaway and Sant’Anna (2020) and Sun and Abraham (2021)
approaches do. Other recent papers using this setup include Goldschmidt and Schmieder (2017); Deshpande
and Li (2019); Clemens and Strain (2021); Bessen et al. (2023).
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For each event, we draw all treated workers and a twice as large random sample of control
workers — with a minimum of 200 control workers if there are fewer than 100 treated workers.
We restrict the pool of control workers to those in training occupations with the same typical
training duration as each treated occupation to avoid confounding employment with training
spells. We drop events with fewer than 20 treated workers in our data: this leaves a total of
379 curriculum update events and 295,348 unique workers, 152,989 of which are treated and
142,359 of which are controls.

Note that this approach uses repeated cross-sections of worker cohorts rather than a
worker panel, as pre-training (i.e. pre-treatment) outcomes within workers do not exist.
Hence, the first difference in our differences-in-differences (DiD) strategy is the difference in
outcomes between ‘old-skilled’ cohorts (i.e., workers trained in the old curriculum) and ‘new-
skilled’ cohorts (i.e., workers trained in the new curriculum) of the same occupation. The
second difference is the difference in outcomes between treated workers who were trained in
occupations that have seen an update and control workers who were trained in occupations
that have not seen an update over the same time window.

The parameters of interest are βc, which capture the treatment effect relative to the
pre-treatment cohort c = −1. We consider a range of worker outcomes: log daily wages, log
annual earnings, non-employment, job mobility (across occupations, industries, and firms),
and educational upgrading. For the case of log wages, for example, we expect positive
post-treatment estimates (βc≥0 > 0), reflecting that workers entering the labor market with
updated skills earn higher wages over the first five post-training years than past entrants
without updated skills, relative to entrants in control group occupations where no skill
updates took place.

We control for calendar year (γt) and training occupation (δj) dummies as well as worker
characteristics (Xit)—age, and gender. We interact all controls with event dummies as is
standard in stacked designs. We cluster standard errors at the level of treatment: training
occupation by event.

Estimates of βc can be interpreted as causal effects under the identifying assumptions of
(i) parallel trends in the absence of curriculum updates, (ii) no anticipation of the curriculum
update by (prospective) trainees (nor anticipatory reactions by firms), and (iii) SUTVA.
Below, we provide empirical support for these assumptions in several ways. First, we show
there are no significantly distinct pre-trends in worker outcomes. Further, one may be
concerned that curriculum updates increase student interest in pursuing those occupational
training programs, potentially raising trainee quality and thereby affecting subsequent labor
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market outcomes. This would imply that any wage impacts need not reflect returns to new
skills. In Appendix E we therefore extensively consider changes in trainee composition as
well as apprenticeship application numbers, finding no evidence of changes around curriculum
updates, consistent with parallel trends and no anticipation. Last, we show that positive
wage effects are driven by faster wage growth for treated cohorts, not a deterioration for
control group cohorts as would be expected in the case of a SUTVA violation. We also
confirm our results are robust to excluding from the control group those occupations with
the highest worker mobility from the treated occupations.

4.2.2 Wage impacts

Table 8 shows descriptives for our sample of vocationally trained labor market entrants
within the first five years after training completion and the firms they are employed in,
based on SIEED data. Vocationally trained labor market entrants are 23 years old on
average, and 40% are female. Daily wages are around 70 euros, with a standard deviation
of 30 euros. Most workers are employed year-round: the average number of annual working
days is 268, with a median of 365. Last, workers are employed in relatively large firms (559
workers on average), although the median firm size is 40 workers. Appendix Table B13
shows corresponding descriptives for the stacked sample, separately for the τ = −1 cohorts
of treated and control group workers.

Figure 17 provides estimates of equation (5), using log daily wages as the dependent
variable and multiplying βc coefficients by 100 for legibility. Reassuringly, there is no evidence
of pre-trends, consistent with treated and control group worker cohorts being on similar wage
trajectories before the curriculum reform. We find significant positive wage effects from
curriculum updates, measured over workers’ first five years after graduation from vocational
training. These effects are up to 2.2% higher daily wages for graduates of the new curriculum
compared to graduates from the old curriculum— relative to a control group of graduates
in occupations with no curriculum update. This is striking since we are comparing workers
trained for the exact same occupation, but with an updated curriculum. We find positive
wage effects starting from the third cohort trained in the new curriculum onward. Grace
periods in implementing the new curriculum, discussed above, may contribute to the delay.
This is particularly true since impactful and technology-driven curriculum changes, for which
we would expect larger wage returns, are more likely to be granted grace periods. The
positive wage returns highlight that educational content is racing to keep up with changing
skill demands, and graduates with updated skills earn a significant wage premium. Appendix
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Figure A9 shows predicted log wages for treated and control group workers, highlighting that
the found wage returns are the result of more rapid wage growth for treated worker cohorts
after the curriculum update, not slower wage group for control group workers. As such, the
wage premium for obtaining new skills reflects an absolute improvement, not just a relative
one.34

Appendix Table B14 provides the corresponding estimates for our main specification in
column 1. Column 2 excludes the first year after graduation, in case starting wages for
vocationally trained workers in Germany are relatively rigid, with graduates having little
bargaining power over their wages. However, we do not find larger estimates in this specifi-
cation, indicating that starting wages are also positively impacted by curriculum updates.

In Appendix E, we document that curriculum updates do not impact trainee composition,
suggesting that wage increases are not driven by improvements in trainee characteristics.
We also do not find any changes in program selectivity, as proxied by the share of unfilled
apprenticeship positions or unsuccessful apprenticeship applications. Further, Appendix
Figure A8 shows that curriculum updates do not change the composition of training firms (for
example because only higher-paying firms can effectively provide updated skills): training
firm AKM (Abowd et al., 1999) fixed effects are unaffected by curriculum updates. This
means that wage returns are not driven by workers having been trained in higher-paying
firms and remaining there after employment.

4.2.3 Mechanisms

To inform on the mechanisms underlying improved wage outcomes for workers with updated
skills, we first consider how wage impacts differ by updated occupations’ technology expo-
sure. Curriculum updates may occur for various reasons, but exposure to technology is an
important driver, as Section 3.1 documents. If curriculum updates provide a skill set that
is more complementary to new technologies (see Section 3.2), we would expect to see wage
returns of curriculum updates for workers trained in technology-exposed jobs.

Figure 18 reports wage returns to curriculum updates separately by technology exposure,
defined as the exposure of the treated occupation to patents being above or at or below
the median exposure, as before. We confirm that curriculum updates for highly technology-
exposed occupations yield wage returns for new-skilled worker cohorts, and these wage premia

34Our results are very similar when we restrict control group occupations to be from different 2-digit occu-
pations than treated occupations, reducing concerns that there are spillovers to the control group.
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are higher than for less technology-exposed occupations, especially for later cohorts. While
no difference is visible for the first two ‘new-skilled’ cohorts, cohorts trained in occupations
with high technology exposure two to five years after the curriculum update earn 2.4%
(cohort 2), 3.1% (cohort 3), 4.1% (cohort 4), and 4.2% (cohort 5) higher wages over the first
five years of their careers than does the last cohort trained in the old curriculum (c = −1).
Corresponding estimates for workers trained in occupations with low technology exposure
are smaller than 1% and not statistically significant.

To further assess the relationship between technology exposure and wage returns from
skill updates, we estimate models separately by update event, and correlate the resulting
update-specific wage returns to the curriculum’s technology exposure. Figure 19 shows bin-
scatters for these estimates over the range of technology exposure, separately for production
and service occupations. Technology exposure is measured as the log of linked digital patent
counts — Appendix Figure A11 shows corresponding binscatters when using the level of
patent counts, i.e. including curricula with zero linked patents. Event-specific estimates are
weighted by worker cohort size before constructing equally-sized bins. Examples of curricula
in the bins with low exposure are Orthopedic shoemaker, Bicycle mechanic, and Stone mason
and stone sculptor for production; and Barber and Tourism and leisure clerk for services.
Curricula in medium-exposed bins include Hydraulic engineer, Carpenter, and Technical as-
sembler for production; and Warehouse logistic specialist, Marketing communications clerk,
and Medical assistant for services. Curricula in the most-exposed bins include Systems IT
specialist, Automobile mechanic, and Aircraft electronics technician for production; and
Pharmacist and Media designer digital and print for services. In both figures, there is a
clear upward relationship between the technology exposure of a curriculum update and the
resulting wage return. This relationship holds within production as well as within services
occupations, even though wage returns are typically higher across the board for production
occupations.

Taken together, this evidence suggests that skill updates spurred by advancing technology
impart larger and longer-lasting labor market advantages than updates spurred by other fac-
tors. Appendix Figure A10 plots predicted log wages for treated and control group workers by
technology exposure, showing that wage growth for workers trained for technology-exposed
occupations accelerates after the curriculum update.

We next study the impacts of curriculum updates on annual wage income rather than
log daily wages: these annual effects include any impacts on days worked. Estimates are
shown in panel A of Appendix Figure A12. As for daily wages, we find significant annual
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income increases from training in updated curricula highly exposed to technological advances.
Estimated effects are similar in magnitude to the daily wage impacts (up to 4.1% higher
annual wages over the first five years post training), suggesting that the main margin of
adjustment is through wages earned rather than days worked as expected among this group
of early career workers. Models estimated for annual days in employment, shown in panel B
of Appendix Figure A12, confirm only very small impacts on the employment margin which
are almost never significant.35

To consider whether these labor market advantages accrue from worker differences in
early career paths, we use occupation, industry, and firm mobility as outcomes in equation
(5). Do skill updates make workers more likely to remain in the occupations they were trained
for? Do wage returns emerge within the same firms (and industries and occupations), or do
they result from workers with new skills having different job mobility patterns?

Figure 20 displays these mobility estimates, considering mobility outcomes relative to
the worker’s apprenticeship position: that is, we consider whether workers have moved out
the 4-digit occupation, the 3-digit industry, or of the firm where they did their apprentice-
ship. (Results are similar when instead considering year-on-year mobility, i.e. relative to the
occupation, industry, and firm in which they did their apprenticeship until their first move,
then relative to their new position for the second move, and so on.)

A consistent picture emerges: curriculum updates do not have a measurable impact
on industry or firm switching, but they do reduce the probability of workers leaving their
training occupation. The reduced occupational mobility pattern aligns with the timing of
wage returns, becoming stronger for the later cohorts. Relative to their training occupation,
cohorts with updated skills are up to 3.1 percentage points less likely to switch occupations
over the first five years of their career. This is a moderately-sized effect compared to the
baseline probability of occupation mobility of 35% over the first five years of the career,
shown in Table 8.

Although new-skilled workers do not have differential rates of firm mobility, as shown in
panel of A of Figure 20, the direction of mobility may still differ. Panel B therefore considers
the average AKM fixed effect of the firms workers are employed in. We find some evidence
that curriculum updates allow workers to move to higher-paying firms, especially for the

35Given workers’ very high labor force attachment, we only consider workers with at least some income:
those who do not work at all need not be unemployed but may also engage in other activities, such as a
gap year abroad. When we separately estimate models for the probability of having any earnings, we do
not find any impact of curriculum updates on this margin.
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latest cohort: workers’ firm AKM fixed effect increases for the very last new-skilled cohort,
by 0.03 standard deviations. (For high-exposure events, this increases to 0.05 standard
deviations.)

To gain insight into how the wage effects of curriculum updates evolve over the first five
years of workers’ careers, we estimate the model separately by workers’ potential experience.
Estimates are plotted in Appendix Figure A13. For example, the series labeled ‘3 years post
training’ considers how log daily wages in the third year after vocational training completion
evolve across worker cohorts. Comparing across these subplots reveals that wage returns
accruing relatively consistently over the first five years of the career. An additional benefit
of the estimates by potential experience is that our baseline specification could contain
spillover effects because we consider wages averaged over the first five post-training years. In
that specification, old-skilled cohorts trained before the curriculum update in part earn their
wages over years when new-skilled cohorts have already entered the labor market, potentially
impacting the estimates for c < 0. The estimates shown in Figure A13 are therefore better
identified if there are spillover effects.

Lastly, we perform various additional (robustness) checks. First, our results hold when
we control for firm fixed effects, whether defined as the firm where the workers did their
apprenticeship training or where the workers are employed. Effect sizes are reduced by
about 50% when adding the latter type of firm effect, confirming that moves to higher-
paying firms are part of the underlying mechanism. Second, results are robust to excluding
from the control group those occupations with the highest worker mobility from the treated
occupations: while estimates become somewhat less precise, the effect sizes are very similar.
This mitigates concerns about SUTVA violations. Finally, Appendix Figure A14 shows
that wage effects are not driven by later educational upgrading (i.e. obtaining a university
or ‘Fachhochschule’ degree, akin to a university of applied sciences degree) by new-skilled
workers.36 We also do not find any impacts on workers’ probability of obtaining a Master
craftsman diploma, either in the short or long run.

Overall, we conclude that skill updates provide labor market entrants with advantages
through higher wages, coupled with increased occupational retention. These benefits are
predominantly found for skill updates related to technological exposure, suggesting changes
in within-occupational skill supply play an important role in keeping workers’ expertise

36On the whole, German vocationally trained workers are not very likely to pursue further full-time education:
in our sample, 2.7% obtain a university degree within 5 years post graduation, and 11% do so at some
point over their entire careers.
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relevant in the face of changing skill demands.

4.3 Do curriculum updates lead to skill obsolescence for incum-
bent workers?

Having established that new-skilled workers benefit from curriculum updates, we now study
labor market outcomes of incumbent workers when new-skilled workers enter the occupation,
interpreting declining wages as an indication of skill obsolescence. To do so, we construct a
worker-level panel of vocationally trained workers, only including occupational incumbents,
defined as having worked full-time in a single occupation for at least five consecutive years
prior to a curriculum update in that occupation. We exclude apprentices and other workers
not subject to social security contributions. We exploit the fact that we can follow individual
incumbents over time by analyzing changes in their labor market outcomes before and after
workers trained in a new curriculum enter the occupation. In particular, we estimate

Yijt =
∑

t=[−5,5]
βtUpdatej × It + δi + γt + εijt, (6)

where t is normalized such that t = −3 is the year of the curriculum update and t = 0
is the year where newly trained worker cohorts enter the labor market. Yijt is an outcome
for worker i employed in occupation j in the years t = [−5; −5]. δi captures individual
fixed effects, γt relative time period fixed effects. We stack observations for different events,
interact all controls with event dummies, and cluster standard errors at the level of treatment
(training occupation by event).

For each event, Updatej is a treatment dummy indicating whether occupation j has
seen a curriculum update, and therefore an inflow of workers trained in a new curriculum.
This separates our treatment group (incumbents in occupations with an inflow of new-
skilled workers) from our control group (incumbents in occupations without an inflow of new-
skilled workers). We match treated and control group workers based on their employment in
production or service occupations, resulting in a sample of 1,050,828 unique workers, 561,422
in the treated group and 489,406 in the control group. All treated workers are exposed to
new-skilled entrants in t ≥ 0.

The parameters of interest are βt, which estimate the effect of being exposed to entrants
with new skills on a range of incumbent worker outcomes: log daily wages, log annual
earnings, annual days in non-employment, and job mobility. For the case of log wages, for
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example, we expect negative post-treatment estimates (βt≥0 < 0) if the competition with
new-skilled workers reduces the returns to incumbents’ skills, indicating skill obsolescence,
or positive post-treatment estimates (βt≥0 > 0) if incumbents benefit from the entry of
new-skilled workers via, for example, learning or q-complementarity between occupational
incumbents and new-skilled entrants.

We estimate the regression separately for incumbent workers of different age groups (with
age measured in t = −3): 24–34, 35–44, 45—54, and 55–65 years old. For each event, we
draw all treated incumbents and an equally large random sample of control incumbents —
with a minimum of 100 control incumbents if there are fewer than 100 treated incumbents.
As before, control group workers are weighted by 1

ni
, with ni being the number of controls

for treated worker i.
Appendix Table B15 shows descriptives for the sample of occupational incumbents. On

average, incumbents are 42 years old, 36% are female, and they earn around 90 euros daily
– 30% more than the early career workers we considered earlier. Unsurprisingly, they are
somewhat less likely to switch occupations and industries than are early career workers,
although firm mobility rates are still relatively high.

Panel A of Figure 21 shows that curriculum updates negatively affect wages for older
occupational incumbents (ages 45–54, but especially ages 55–65), consistent with skill obso-
lescence. These wage losses are sizable, and cumulate over time: after five years, daily wages
fall by 3.0% for incumbents aged 45–54 and by 9.1% for incumbents aged 55–65. These wage
losses experienced by older workers are informative about pure skill price changes, since
older workers are unlikely to upgrade their skills on the job (Heckman et al., 1998; Bowlus
et al., 2023). For younger incumbents, we do not find wage losses: wage effects are zero for
those aged 24–34 and 35–44. Incumbents do not work less in response to the entrance of
new-skilled workers (panel B in Figure 21).

In contrast to new-skilled workers, incumbents— especially the younger ones— are more
likely to switch 1-digit occupations or 1-digit industries, as shown in panels A and B of Figure
22. (Results are robust to considering more detailed occupation and industry classifications
for switches.) This suggests that new-skilled workers have skills relevant for the occupation
they were trained in, reducing their occupation switching, while younger incumbents lack
the expertise currently relevant in their occupation and respond by switching to other jobs.
We also find that incumbents, especially older ones, are more likely to move to firms with
somewhat lower AKM fixed effects, shown in panel C of Figure 22. Our findings are consistent
with Janssen and Mohrenweiser (2018), who consider the effect of a curriculum update
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involving CNC skills on the oldest incumbents, finding sizable wage losses (and only small
and transitory non-employment effects), as well as moves to lower-AKM firms. We do
not detect statistically significant differences between skill obsolescence effects for updates
involving higher versus lower technology exposure, although the estimates for low exposure
are much noisier.

These analyses contribute causal evidence of skill obsolescence. Our findings are in line
with Deming and Noray (2020)’s cross-sectional analysis of STEM workers, showing flatten-
ing age-earnings curves and increased job switching over worker careers for faster-changing
educational fields.

5 Curriculum updates and firm capital investments

If curriculum updates improve workers’ ability to work with new technologies, we would
expect to see increased firm capital investment following curriculum updates. Previous work
has shown a positive correlation between firms’ participation in apprenticeship training and
innovation in Switzerland (Rupietta and Backes-Gellner, 2019); provided causal evidence that
supply reductions of apprentices reduce firm technology investments in Germany (Lipowski,
2024); and documented higher mentions of technology use in job ads for firms employing
new-skilled apprentices for specific IT-intensive occupations in Switzerland (Schultheiss and
Backes-Gellner, 2024). We identify causal effects of curriculum updates on investments in
a difference-in-differences design and consider all observed updates, allowing us to compare
those with high and low technology exposure.

We leverage IAB’s Linked-Employer-Employee-Data (LIAB), which combines the IAB
Establishment Panel survey with administrative employment information of all employees
at surveyed firms on June 30 of each year. The IAB Establishment Panel is a large annual
representative survey of establishments which contains information about investments. It
covers West Germany since 1993, and is conducted at the workplace level (henceforth: firms).
Employment information is based on administrative records reported to the social security
insurance. We merge these data with our curriculum update events, and designate firms as
treated if the curriculum is updated for at least one of their two largest vocational training
occupations (in terms of their pre-update trainee employment share).37

37When there are more than two occupations tied for largest, we consider all largest occupations.
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We estimate a stacked-event DiD model at the firm level,

Yit =
∑

t=[−3,6]
βtUpdatei × It + δi + γt + εit, (7)

where Yit is log investments or a dummy for positive investments (to consider the extensive
margin) for firm i in the years t = [−3; 6]. Time t is normalized such that t = 0 is the year
trainees enter vocational training under a new curriculum. δi captures firm fixed effects,
and γt calendar year fixed effects. As before, all indices refer to the index by event. We
retain firms that invest at least once in the time window and match firms on log investment
levels in the pre-treatment periods (t-1, t-2, and t-3) using Mahalanobis distance matching
(selecting the three nearest-neighbors). To deal with zero investments, we match on both
log(investments+1) and binary variables for zero investments. We cluster standard errors at
the event-by-firm level.

Table 9 shows firm-level descriptives for treated and control firms in year t − 1, post
matching. Our analyses are based on an unbalanced panel of 6,996 distinct firms in t = −1,
3,360 of which are treated. Treated firms on average employ 389 workers (243 for control
firms), and are more likely to be in the manufacturing sector. Log investments have a high
standard deviation of around 2.5, reflecting that investments are lumpy.

Panel A of Figure 23 shows the estimates. Log investments rise in treated compared to
control firms once apprentices are being trained in the new curriculum, and continue being
higher when new-skilled workers enter the labor market, with investment increases of up
to 8%, corresponding to 3.2% of a standard deviation (= 0.08/2.5 × 100). This suggests
that both the need to train new skills and newly supplied skills indeed raise firm invest-
ments. Consistent with this interpretation, these investment increases are only observed for
curriculum updates with high technology exposure, as seen in panel B of Figure 23.

Appendix Figure A16 shows equivalent estimates for the probability of investing, i.e. fo-
cusing on the extensive margin. Here, we find no effects, irrespective of technology exposure.
This implies that investment effects are driven by the intensive margin, and by firms that
were already investing.38,39

38When we combine the intensive and extensive margins by setting an investment change from zero to any
positive investment to either a 1% or a 10% change (an approach suggested by Chen and Roth 2024), we
find significantly positive effects, implying the intensive margin effects are meaningfully large.

39In this baseline, we define treatment status based on curriculum updates of firms’ main training occupa-
tions: this is our most direct measure of being exposed to newly-trained workers, but limits the analyses
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6 Conclusion

Do changes in educational content allow workers to adjust to evolving skill requirements
from advancing technology? We consider this question in the context of vocationally trained
workers in Germany, a large group of non college educated workers who are overrepresented
among the middle- and low-paid jobs that have been highly exposed to (automation) tech-
nology. Leveraging a novel database of legally binding training curricula descriptions and
changes therein over 1971–2021, we find that occupational exposure to technological change
spurs educational updates, with training content evolving toward tasks that are more com-
plementary to digital technology. This is largely driven by the emergence of new skills in
vocational training curricula, highlighting that workers acquire new competences.

Using administrative employer-employee data for labor market entrants, we show that
educational updates lead to improved wage outcomes for ‘new-skilled’ entrants compared
to ‘old-skilled’ entrants, and a higher probability of remaining employed in the specific oc-
cupation the worker trained for. This indicates that workers can more effectively adapt to
changing occupational skill demands, keeping their expertise relevant in the labor market. In
contrast, older incumbent workers in occupations with skill updates experience wage declines
when newly trained workers enter the labor market, compared to those in occupations with-
out such updates. Younger occupational incumbents are more likely to switch occupations,
and move to lower-paying firms. Consistent with technological change playing an important
role, firm capital investments rise when firms are exposed to workers trained in updated
curricula, especially when these curricula have more technological content.

These findings highlight that changes in educational content, not only increases in ed-
ucational attainment, are an important tool for reinstating human expertise as technology
advances. This effect is especially significant for non-college post-secondary education, which
equips workers for a wide range of middle-class occupations. The rapid progress of artificial
intelligence only reinforces this point.

We highlight that educational curriculum updates are common outside of Germany, as
well. In the German context, vocational curriculum updates are jointly decided on by em-
ployer organizations, labor unions, and the Federal Institute for Vocational Education and
Training: recent work suggests involving employers may be important for ensuring worker

to training firms. When we instead define treatment based on employment shares of occupations whose
curricula are updated (allowing us to include all firms), we also find positive log investment effects (of up
to 6%, which are driven by high-technology exposed occupations.
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skills remain relevant for the labor market (Katz et al., 2022; Kahn et al., 2023). Moreover,
coordination among employers may increase their willingness to train workers in new skills:
in the absence of a legally binding curriculum adopted by all training firms, individual em-
ployers may be less inclined to provide such training. This is strengthened by the active role
of labor unions and the Federal Institute for Vocational Training in these updates, since they
emphasize that skill skills covered in the curriculum should not be firm-specific ones. Con-
sidering the role of such institutional forces in shaping skill acquisition and worker outcomes
is a promising direction for future research.
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Figures

Figure 1: Distribution of Wages for Vocationally Trained Workers vs. Others
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Figure plots the distribution of real daily wages (up to 500 euros) for vocationally trained workers versus
all others based on SIAB data.
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Figure 2: Distribution of Wages for Occupations With and Without Vocational Training
Curriculum
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Figure shows a boxplot of real daily wages for occupations with and without a vocational training
curriculum (base year for deflation: 2015) based on SIAB data. Vertical lines indicate the median; boxes
reflect the interquartile range; and whiskers indicate the 10th and 90th percentiles. Occupations weighted
by employment.

46



Figure 3: Excerpts from 1992 Training Curriculum for Process Control Electronics
Technician
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Figure 4: Excerpts from 2003 Updated Training Curriculum for Industrial Electrical
Professions (Update of Process Control Electronics Technician)
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Figure 5: Excerpts from 1978 Training Curriculum for Industrial Clerk
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Figure 6: Excerpts from 2002 Updated Training Curriculum for Industrial Clerk
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Figure 7: Number of Curriculum Changes by Year
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Figure shows the 5-year moving average of the number of curriculum changes by year.

Figure 8: Number of Training Occupations with Observed Curriculum by Year

0

50

100

150

200

250

300

350

N
um

be
r o

f T
ra

in
in

g 
O

cc
up

at
io

ns

1970 1980 1990 2000 2010 2020

Figure shows the number of active training occupations in the national register after the introduction of
the Vocational Training Act in 1969.
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Figure 9: Years until Curriculum Update
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Figure shows the distribution of years until curriculum updates for initial training occupation observations
(N = 470). Panel A shows the overall distribution across training occupations. Panel B shows a boxplot by
broad occupation group. Vertical lines indicate the median; boxes reflect the interquartile range; and
whiskers indicate the 10th and 90th percentiles.
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Figure 10: Share of Breakthrough Patents by Technology Class
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Figure shows the distribution of breakthrough patents across broad technology classes defined by Kelly
et al. (2021). Over 1940–2002, we observe N = 141, 708 breakthrough patents in Instruments &
Information.

53



Figure 11: Digital Technology Exposure of Training Curricula
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Figure shows the distribution of linked digital patent counts for initial training occupation observations
(N = 791). Panel A shows the overall distribution across training occupations. Panel B shows a boxplot by
broad occupation group. Vertical lines indicate the median; boxes reflect the interquartile range; and
whiskers indicate the 10th and 90th percentiles.
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Figure 12: Impacts of Digital Technology Exposure on Curriculum Updates Using Local
Projections
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Figure presents estimates of equation (3). The dependent variable is a dummy for the curriculum being
updated (conditional on not having being updated yet). Coefficients multiplied by 100. Standard errors
clusted by occupation, whiskers represent 95% confidence intervals.
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Figure 13: Changes in Digital Technology and Social Skill Use in Updated Curricula,
1976–2021
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Figure reports coefficients on a linear timetrend, from a regression of keyword occurrence, keyword shares,
or keyword counts in vocational training curricula (see equation (4)), for the subsample of curricula with
updates over 1976–2021. High tech (low tech) defined as curricula with an initial digital technology
exposure above (at or below) the median across all occupations.
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Figure 14: Changes in Routine Task Intensity in Updated Curricula, 1976–2021
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Figure reports coefficients on a linear timetrend, from a regression of routine task content in vocational
training curricula (see equation (4)), for the subsample of curricula with updates over 1976–2021.
Horizontal lines reflect 95% confidence intervals. High tech (low tech) defined as curricula with an initial
digital technology exposure above (at or below) the median across all occupations.
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Figure 15: Removed and Newly Added Words in Curriculum Updates
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Figure presents the average number of distinct removed and distinct newly added words across curriculum
updates in absolute number (panel A) and as a share of distinct prior curriculum word counts (panel B),
by broad occupation.
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Figure 16: Changes in Skill Content from Removed, Remaining, and Newly Added Words
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Figure presents the non-routine task intensity (panel A) and complexity (panel B) of new curriculum words
plotted against remaining words in the previous curriculum. Fitted lines are local polynomials weighted by
training occupation employment shares.

59



Figure 17: Wage Impacts of Curriculum Updates
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Figure reports stacked difference-in-differences estimates of equation (5), and 95% confidence intervals.
Cohort 0 is the first cohort with the new curriculum; cohort -1 is the reference category. Individuals are
included up to five years after graduation. Standard errors clustered at the level of training occupation by
event.
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Figure 18: Wage Impacts of Curriculum Updates, by Technology Exposure
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Stacked difference-in-differences estimates of equation (5), and 95% confidence intervals. Cohort 0 is the
first cohort with the new curriculum; cohort -1 is the reference category. Individuals are included up to five
years after graduation. Standard errors clustered at the level of training occupation by event.
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Figure 19: Update-Specific Wage Impacts by Curriculum Technology Exposure
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Binscatter of wage returns estimated separately for each curriculum update event, against curriculum
technology exposure, measured as the log of linked patents. The vertical line indicates median technology
exposure as used throughout the paper.
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Figure 20: Worker Mobility Impacts of Curriculum Updates

A. Occupation, industry, and firm mobility
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Stacked difference-in-differences estimates of equation (5), and 95% confidence intervals. Mobility is
defined relative to the apprenticeship position in panel A. Cohort 0 is the first cohort with the new
curriculum; cohort -1 is the reference category. Individuals are included up to five years after graduation.
Standard errors clustered at the level of training occupation by event.



Figure 21: Wage and Employment Impacts of Curriculum Updates for Occupational
Incumbents

A. Log daily wage
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Stacked difference-in-differences estimates of equation (6), and 95% confidence intervals. Based on 339
curriculum update events.
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Figure 22: Job Mobility Impacts of Curriculum Updates for Occupational Incumbents

A. Occupational mobility
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Stacked difference-in-differences estimates of equation (6), and 95% confidence intervals. Based on 339
curriculum update events.



Figure 23: Investment Impacts of Curriculum Updates

A. Overall
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Stacked difference-in-differences estimates of equation (7) using log investments as the dependent variable,
and 95% confidence intervals. Based on 209 curriculum update events.
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Tables

Table 1: Largest Occupations With a Vocational Training Curriculum

Avg. empl.
share in %

∆ Empl. share
in pp

Avg. real
daily wage

Office clerks and secretaries 11.2 -6.0 100.9
Occupations in warehousing and logistics 4.3 0.1 82.3
Occupations in machine-building and -operating 3.5 -1.4 136.0
Sales occupations in retail trade 3.5 -2.5 70.0
Professional drivers (cargo trucks) 3.3 -0.8 87.7
Technical occupations in automotive industries 2.9 -1.5 99.3
Bankers 2.1 -0.4 140.4
Occupations in electrical engineering 2.0 -1.1 151.9
Management assistants in wholesale and foreign trade 1.5 -0.9 120.8
Occupations in metal constructing 1.4 -0.4 95.5

Source: SIAB. Average employment share: Average share of occupational regular full-time employment in
total regular full-time employment across the years 1975–2017. ∆ Employment share: Change in the share
of occupational regular full-time employment in total regular full-time employment between 1975 and 2017
in percentage points. Average gross daily wage: Average gross real daily wage of all regularly, full-time
employed workers in real euros.
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Table 2: Descriptives of Curriculum Updates

A. Unweighted B. Empl. Weighted
Mean SD N Mean SD N

Any update 0.038 0.192 11,843 0.051 0.220 11,709
Type of update
Content update only 0.021 0.143 11,843 0.025 0.155 11,709
Content update + renaming 0.015 0.122 11,843 0.023 0.149 11,709
Content update + aggregation 0.010 0.098 11,843 0.020 0.140 11,709
Content update + segregation 0.003 0.053 11,843 0.004 0.065 11,709

Years until update | update = 1† 15.3 7.8 455 14.3 7.4 444
SD - Standard deviation. All variables are binary. Any update: Indicates that the curriculum was changed.

Content update only: Indicates that the content of the curriculum was changed without renaming, aggre-
gation, or segregation. Renaming: Indicates that the title of the occupation was changed independent of
the type of change. Aggregation: Indicates that the occupation was merged with another occupation. Seg-
regation: Indicates that the occupation was split into several occupations. A training occupation may be
split into several successors, each of which is an aggregation of multiple predecessors; and aggregations and
segregations may also be accompanied by renaming. These types of updates are therefore not mutually
exclusive and the sum across update types is larger than the total number of updates. Numbers based on
the yearly panel. † – Based on initial observations only.
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Table 3: Examples of Most and Least Updated Occupations

Training Occupation Broad Occupation
Pr(Update)

Per Year

Examples of Most Updated Training Occupations
Flexograph Production 0.12
Electronics technician for automation technology Production 0.10
Industrial mechanic Production 0.10
Retail clerk Business service 0.09
Electrician Production 0.09
Automobile mechanic Production 0.09
Electronics technician for aeronautical systems Production 0.09
Decor template maker Production 0.09
Chemical technician IT + scientific service 0.08
Packaging technologist Production 0.08

Examples of Least Updated Training Occupations
Gardener Production 0.02
Manufactured porcelain painter Production 0.02
Civil engineer Production 0.01
Foundation engineering specialist Production 0.01
Road builder Production 0.01
Asphalt builder Production 0.01
Wooden toy maker Production 0.01
Toy manufacturer Production 0.01
Industrial insulator Production 0.01

Examples of Training Occupations Without Updates
Brass instrument maker Production 0.00
Delivery driver Other commercial service 0.00
Floor layer Production 0.00
Gilder Production 0.00
Glass blower Production 0.00
Hotel clerk Personal service 0.00
Makeup artist Personal service 0.00
Stage painter and sculptor Personal service 0.00
Woodcarver Production 0.00

Training occupations associated with the most/least updated KldB occupations.
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Table 4: Most and Least Technology-Exposed Training Occupations

Training Occupation Broad Occupation

10 Most Exposed Training Occupations
Electronics technician for machines and drive technology Production
Electronics technician for industrial engineering Production
Electronics technician for devices and systems Production
Industrial mechanic Production
Cutting machine operator Production
Electronics technician for information and system technology Production
Electronics technician for building and infrastructure systems Production
Plant mechanic Production
Tool mechanic Production
Electronics technician for automation technology Production

10 Least Exposed Training Occupations
Plant technologist Production
Factory fireman Business service
Leather production and tanning technology specialist Production
Ice cream specialist Personal service
Confectionery technologist Production
Wine technologist Production
Candle and wax maker Production
Concrete and terrazzo manufacturer Production
Flat glass technologist Production
Bespoke shoemaker Personal service

Ranked by number of linked digital patents.
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Table 5: Curriculum Updates and Digital Technology Exposure

A. Unweighted
(1) (2) (3) (4)

Digital Tech Exposure 0.42∗∗∗ 0.46∗∗∗ 0.50∗∗∗ 0.48∗∗∗

(0.09) (0.10) (0.11) (0.10)
N 10,729 10,729 10,729 10,729

B. Weighted by initial employment share
(5) (6) (7) (8)

Digital Tech Exposure 0.84∗∗∗ 0.80∗∗∗ 0.81∗∗∗ 0.83∗∗∗

(0.17) (0.17) (0.16) (0.15)
N 10,729 10,729 10,729 10,729

Initial Curriculum Year FE X X X X
Year FE X X X X
Broad Occ FE X X X
Broad Occ FE × Year FE X X
Initial Empl. Share X

Dependent variable: Dummy for curriculum update. Linear probability models, coefficients multiplied by 100. Initial
Curriculum Year FE in five year bins. Standard errors clustered at the 5 digit occupation level. * p < 0.05, ** p < 0.01, ***
p < 0.001.
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Table 6: Years until Curriculum Updates and Digital Technology Exposure

A. Unweighted
(1) (2) (3)

Digital Tech Exposure −0.45∗∗ −0.62∗∗ −0.63∗∗

(0.17) (0.19) (0.19)
N 376 376 376

B. Weighted by initial employment
(4) (5) (6)

Digital Tech Exposure −0.53∗ −0.68∗∗ −0.73∗∗∗

(0.23) (0.24) (0.21)
N 376 376 376

Initial Curriculum Year FE X X X
Broad Occ FE X X
Initial Empl. Share X

Dependent variable: Years until curriculum update. Initial Curriculum Year FE in five year bins. Standard errors clustered at
the 5 digit occupation level. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 7: Type of Curriculum Update and Digital Technology Exposure

A. Content update
only

B. Content update
+ Renaming

(1) (2) (3) (4) (5) (6) (7) (8)
Digital Tech Exposure 0.21∗∗ 0.22∗∗∗ 0.26∗∗∗ 0.26∗∗∗ 0.20∗ 0.23∗∗ 0.23∗∗ 0.22∗

(0.07) (0.06) (0.07) (0.07) (0.08) (0.08) (0.09) (0.09)
N 10,546 10,546 10,546 10,546 10,499 10,499 10,499 10,499

C. Content update
+ Aggregation

D. Content update
+ Segregation

(9) (10) (11) (12) (13) (14) (15) (16)
Digital Tech Exposure 0.22∗∗ 0.23∗∗ 0.21∗ 0.19∗ 0.07∗ 0.08∗ 0.08∗ 0.07∗

(0.08) (0.09) (0.09) (0.09) (0.03) (0.03) (0.03) (0.03)
N 10,449 10,449 10,449 10,449 10,368 10,368 10,368 10,368

Initial Curriculum Year FE X X X X X X X X
Year FE X X X X X X X X
Broad Occ FE X X X X X X
Broad Occ FE × Year FE X X X X
Initial Empl. Share X X

Dependent variable: Dummy for curriculum update type. Linear probability models, unweighted, coefficients multiplied by
100. Initial Curriculum Year FE in five year bins. Standard errors clustered at the 5 digit occupation level. * p < 0.05, **
p < 0.01, *** p < 0.001. Based on the yearly panel. The reference group is always “no change”. The categories are not
mutually exclusive and the sum of the number of segregations, aggregations and pure content changes is larger than the
overall number of changes.
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Table 8: Descriptives of Vocationally Trained Labor Market Entrants

Mean SD Median N
(1) (2) (3) (4)

Age 23.28 3.02 23.00 3,286,091
Year of birth 1975 9.61 1975 3,286,091
Female 0.40 0.49 0.00 3,286,091
Daily wage 70.42 29.69 71.67 2,350,192
Annual daily wage growth 0.33 6.96 0.06 3,043,054
Years of training 2.82 0.53 2.88 3,286,091
Typical years of training 3.00 0.38 3.00 3,286,091
Annual days employed 268.42 138.28 365.00 3,286,091
Annual labor earnings 18,359 13,620 18,554 3,286,091
Firm size 559.37 2751.89 40.00 2,796,232
Job mobility, relative to apprenticeship:

Occupation 0.35 0.48 0.00 3,286,091
Industry 0.40 0.49 0.00 3,286,091
Firm 0.58 0.49 1.00 3,286,091

Job mobility, year-to-year:
Occupation 0.16 0.37 0.00 3,286,091
Industry 0.17 0.38 0.00 3,286,091
Firm 0.26 0.44 0.00 3,286,091

SIEED sample, full sample prior to stacking. Workers in the first five years after graduation with a
training duration between 1.75 and 4.25 years, restricted to workers for whom we observe the training
occupation and curriculum. N are worker by year observations.

Table 9: Descriptives of Stacked, Matched Firm Sample

Treated Control
Mean SD Mean SD
(1) (2) (3) (4)

Number of workers 389 1521 243 530
Log(investments) 6.00 2.58 5.84 2.43
Any investment (1/0) 0.78 0.41 0.78 0.41
Manufacturing sector (1/0) 0.58 0.49 0.22 0.41
N unique firms 3,360 3,636

Source: LIAB. For year t = −1.
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A.1 Data and measurement
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Figure A1: Digital and Overall Technology Exposure of Training Curricula
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B. Average over 1998–2021
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Figure presents a scatter plot of the relationship between occupational exposure to overall and digital
patents for 1971–1996 (panel A) and 1997–2021 (panel B). Each point corresponds to the average
percentile of overall (x−axis) and digital (y−axis) exposure of one occupational curriculum, where the
average is taken over 1971–1996 (N = 285 occupations) in panel A and over 1997–2021 (N = 451
occupations) in panel B. The 45 degree line in each panel is plotted with dashes.
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Figure A2: Employment Change by Initial Routine Task Intensity
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Source: SIAB. Y-axis: Change in occupational regular full-time log employment between 1975 and 2017.
The x-axis reflects standardized routine intensity of the first curriculum observed in this occupation. For
occupations with a training curriculum only. Weighted by the initial employment share in 1975.
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A.2 Curriculum change

Figure A3: Curriculum Survival Rates by Technology Exposure
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Figure shows Kaplan-Meier survival curves for all curricula updated at some point over the 1970–2021
period, separately by technology exposure.
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Figure A4: Changes in Digital Technology and Social Skill Use in All Curricula,
1976–2021
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Figure reports coefficients on a linear timetrend, from a regression of keyword occurrence, keyword shares,
or keyword counts in vocational training curricula (see equation (4)), for all curricula over 1976–2021. High
tech (low tech) defined as curricula with an initial digital technology exposure above (at or below) the
median across all occupations.
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Figure A5: Changes in Routine Task Intensity in All Curricula, 1976–2021
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Figure reports coefficients on a linear timetrend, from a regression of routine task content in vocational
training curricula (see equation (4)), for all curricula over 1976–2021. Horizontal lines reflect 95%
confidence intervals. High tech (low tech) defined as curricula with an initial digital technology exposure
above (at or below) the median across all occupations.
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Figure A6: Changes in Word Complexity in Updated Curricula, 1976–2021
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Figure reports coefficients on a linear timetrend, from a regression of complex word shares in vocational
training curricula (see equation (4)), for all curricula over 1976–2021. Complex words are defined as those
not in the Dale and Chall (1948) list, following Autor and Thompson (2024). High tech (low tech) defined
as curricula with an initial digital technology exposure above (at or below) the median across all
occupations.
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Figure A7: Removed and Added Word Shares Across Training Occupations
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Figure reports the share of removed words against the share of added words for curriculum updates. The
size of circles reflects average occupational employment shares.
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A.3 Labor market impacts

Figure A8: Impacts of Curriculum Updates on Training Firm Composition
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Figure reports stacked difference-in-differences estimates of equation (5), and 95% confidence intervals;
estimated separately by year post training. Cohort 0 is the first cohort with the new curriculum; cohort -1
is the reference category. Standard errors clustered at the level of training occupation by event.
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Figure A9: Predicted Log Daily Wages for Treated and Control Group Workers
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Figure reports predicted log wages for treated and control group workers using the stacked
difference-in-differences estimate of equation (5). Dashed lines indicate means of pre- and post-treatment
predictions.
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Figure A10: Predicted Log Daily Wages for Treated and Control Group Workers
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B. High technology exposure
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Figure reports predicted log wages for treated and control group workers using the stacked
difference-in-differences estimate of equation (5). Dashed lines indicate means of pre- and post-treatment
predictions.
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Figure A11: Update-Specific Wage Impacts by Curriculum Technology Exposure
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Binscatter of wage returns estimated separately for each curriculum update event, against curriculum
technology exposure, measured as the count of linked patents. The vertical line indicates median
technology exposure as used throughout the paper.
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Figure A12: Impact of Curriculum Updates on Annual Income and Annual Days Employed

A. Log annual income by technology exposure

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7
Lo

g 
ye

ar
ly

 in
co

m
e 

di
ffe

re
nc

e 
(×

 1
00

) 

-5 -4 -3 -2 -1 0 1 2 3 4 5
Worker cohort

Low technology exposure High technology exposure

B. Annual days employed by technology exposure
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Figure reports stacked difference-in-differences estimates of equation (5), and 95% confidence intervals.
Cohort 0 is the first cohort with the new curriculum; cohort -1 is the reference category. Individuals are
included up to five years after graduation. Standard errors clustered at the level of training occupation by
event. 87



Figure A13: Log Daily Wage Impacts of Curriculum Updates By Experience
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Figure reports stacked difference-in-differences estimates of equation (5), and 95% confidence intervals;
estimated separately by year post training. Cohort 0 is the first cohort with the new curriculum; cohort -1
is the reference category. Standard errors clustered at the level of training occupation by event.
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Figure A14: Impacts of Curriculum Updates on Later Educational Upgrading
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Figure reports stacked difference-in-differences estimates of equation (5), and 95% confidence intervals;
estimated separately by year post training. Cohort 0 is the first cohort with the new curriculum; cohort -1
is the reference category. Standard errors clustered at the level of training occupation by event.
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Figure A15: Occupational Total Employment and Wagebill around Curriculum Updates

A. Log total employment
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B. Log total wagebill
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Stacked difference-in-differences estimates of curriculum updates on occupational total full-time log employment (Panel A)
and occupational total full-time log wagebill (Panel B), comparing occupations with curriculum updates to occupations
without updates. Based on 248 updating events. The first year with the new curriculum is 0. Models absorb
occupation-by-event dummies, calendar year-by-event dummies and time-to-event dummies. Standard errors are clustered at
the curriculum level. Considering full-time employed workers in employment subject to social security contributions.
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A.4 Firm investments
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Figure A16: Investment Impacts of Curriculum Updates, Extensive Margin Only
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B. By technology exposure
training update new-skilled workers

-8

-6

-4

-2

0

2

4

6

8

10

D
iff

er
en

ce
 in

 p
ro

ba
bi

lit
y 

of
 in

ve
st

m
en

t
(p

er
ce

nt
ag

e 
po

in
ts

)

-3 -2 -1 0 1 2 3 4 5 6
Year relative to curriculum update

Low exposure High exposure

Stacked difference-in-differences estimates of equation (7) using a dummy for investing as the dependent
variable, and 95% confidence intervals. Based on 210 curriculum update events.
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B Appendix tables

B.1 Data and measurement

Table B1: Tokens per Curriculum Section

Mean p10 Median p90
Exam 3,896 1,448 2,381 5,748
Skills and Knowledge 16,302 2,882 5,435 18,416
Training Framework Curriculum 22,023 7,927 16,396 39,257
Total 34,374 14,719 24,059 54,179
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Table B2: Examples of Digital Patent – Curriculum Pairs

Training Occupation Linked patent example

Body and vehicle builders Self-gauging sensor assembly
Communications electronics technician Method and apparatus for high frequency wireless communication
Courier, express and postal services clerk Internet billing method
Dental technician Process for making a prosthetic implant
Digitization management clerk Process and system for predictive resource planning
E-commerce clerk Method and architecture for multi-level commissioned advertising on a computer network
Engraver Document inscribing machine
Film and video editor Karaoke apparatus and method for medley playback
Office communications clerk Multi-facility appointment scheduling system
Postal service specialist Computer-aided prepaid transmittal charge billing system
Precision optician Modular electronic instrument system having automated calibration capability
Radio electronics technician Electronic circuit
Shipbuilder Wind velocity sensor for sailboat
Social security clerk Self-implementing pension benefits system
Tax clerk Electronic income tax refund early payment system
Travel agent Computer travel planning system

The table shows the title of the most similar digital breakthrough patent for each example training occupation.

Table B3: Descriptive Statistics of Technology Exposure

A. Yearly Panel B. Initial Observations
Unweighted Weighted Unweighted Weighted
Mean SD Mean SD Mean SD Mean SD

Digital Tech Exposure – Full Text 3.85 2.58 4.09 2.61 3.85 2.61 4.18 2.70
Digital Tech Exposure – Exam 4.10 2.58 3.82 2.88 3.80 2.63 3.71 2.77
Overall Tech Exposure – Full Text 5.52 2.25 5.49 2.30 5.35 2.45 5.44 2.51

SD - Standard deviation.
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Table B4: Most and Least Technology–Exposed Training Occupations

Most Exposed Training Occupations Least Exposed Training Occupations

A. Business service
Media designer digital and print Pharmaceutical clerk
Media designer image and sound Advertising salesperson
Wholesale and foreign trade management clerk Factory fireman

B. IT + scientific service
IT specialist Dairy laboratory technician
Digitization management clerk Information and telecommunications system clerk
IT system management clerk IT clerk

C. Other commercial service
Event technology specialist Florist
Plumber Mail clerk
Construction equipment operator Letter and freight traffic specialist

D. Personal service
Optometrist Funeral worker
Lifeguard assistant Ice cream specialist
Housekeeper Bespoke shoemaker

E. Production
Electronics technician for machines and drive technology Candle and wax maker
Electronics technician for industrial engineering Concrete and terrazzo manufacturer
Electronics technician for devices and systems Flat glass technologist

Ranked by number of linked digital patents.
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B.2 Curriculum change

Table B5: Descriptive Statistics of Curriculum Keywords

Total Low tech High tech
Mean SD Mean SD Mean SD

Digital Keywords
Occurrence of digital keywords (0/1) 0.32 0.47 0.18 0.38 0.46 0.50
Share of digital keywords (*1000) 0.07 0.20 0.03 0.08 0.11 0.26
Number of digital keywords 2.42 10.46 0.48 1.33 4.33 14.41

Team Keywords
Occurrence of team keywords (0/1) 0.33 0.47 0.29 0.45 0.38 0.49
Share of team keywords*1000 0.61 1.25 0.61 1.35 0.62 1.14
Number of team keywords 1.79 5.32 1.12 2.43 2.44 7.02
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Table B6: Curriculum Updates and Digital Technology Exposure — Exam Section Only

A. Unweighted
(1) (2) (3) (4)

Digital Tech Exposure 0.17∗ 0.19∗ 0.21∗ 0.20∗

(0.08) (0.09) (0.09) (0.09)
N 10,433 10,433 10,433 10,433

B. Weighted by initial employment share
(5) (6) (7) (8)

Digital Tech Exposure 0.36 0.19 0.12 0.13
(0.20) (0.24) (0.23) (0.23)

N 10,433 10,433 10,433 10,433

Initial Curriculum Year FE X X X X
Year FE X X X X
Broad Occ FE X X X
Broad Occ FE × Year FE X X
Initial Empl. Share X

Dependent variable: Dummy for curriculum update. Linear probability models, coefficients multiplied by 100. Initial
Curriculum Year FE in five year bins. Standard errors clustered at the 5 digit occupation level. * p < 0.05, ** p < 0.01, ***
p < 0.001.

97



Table B7: Years Until Curriculum Update and Digital Technology Exposure — Exam
Section Only

A. Unweighted
(1) (2) (3)

Digital Tech Exposure −0.37∗ −0.41∗ −0.41∗

(0.16) (0.17) (0.17)
N 354 354 354

B. Weighted by initial employment
(4) (5) (6)

Digital Tech Exposure −0.35 −0.53∗ −0.46∗

(0.24) (0.24) (0.23)
N 354 354 354

Initial Curriculum Year FE X X X
Broad Occ FE X X
Initial Empl. Share X

Dependent variable: Years until curriculum update. Initial Curriculum Year FE in five year bins. Standard errors clustered at
the 5 digit occupation level. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table B8: Curriculum Updates and Overall Technology Exposure

A. Unweighted
(1) (2) (3) (4)

Overall Tech Exposure 0.21∗ 0.27∗ 0.36∗∗ 0.33∗∗

(0.10) (0.11) (0.12) (0.12)
N 11,099 11,099 11,099 11,099

B. Weighted by initial employment share
(5) (6) (7) (8)

Overall Tech Exposure 0.65∗∗ 0.48∗ 0.50∗ 0.51∗∗

(0.23) (0.23) (0.20) (0.19)
N 11,099 11,099 11,099 11,099

Initial Curriculum Year FE X X X X
Year FE X X X X
Broad Occ FE X X X
Broad Occ FE × Year FE X X
Initial Empl. Share X

Dependent variable: Dummy for curriculum update. Linear probability models, coefficients multiplied by 100. Initial
Curriculum Year FE in five year bins. Standard errors clustered at the 5 digit occupation level. * p < 0.05, ** p < 0.01, ***
p < 0.001.
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Table B9: Type of Curriculum Update and Digital Technology Exposure – Weighted

A. Content update
only

B. Content update
+ Renaming

(1) (2) (3) (4) (5) (6) (7) (8)
Digital Tech Exposure 0.37∗ 0.32∗ 0.47∗∗ 0.50∗∗ 0.49∗∗ 0.50∗∗ 0.36∗ 0.35∗

(0.16) (0.15) (0.16) (0.16) (0.16) (0.19) (0.16) (0.17)
N 10,546 10,546 10,546 10,546 10,499 10,499 10,499 10,499

C. Content update
+ Aggregation

D. Content update
+ Segregation

(9) (10) (11) (12) (13) (14) (15) (16)
Digital Tech Exposure 0.54∗∗∗ 0.56∗∗ 0.40∗∗ 0.36∗ 0.08 0.09 0.10 0.11

(0.15) (0.19) (0.15) (0.15) (0.06) (0.06) (0.07) (0.07)
N 10,449 10,449 10,449 10,449 10,368 10,368 10,368 10,368

Initial Curriculum Year FE X X X X X X X X
Year FE X X X X X X X X
Broad Occ FE X X X X X X
Broad Occ FE × Year FE X X X X
Initial Empl. Share X X

Dependent variable: Dummy for curriculum update type. Linear probability models, weighted by employment size,
coefficients multiplied by 100. Initial Curriculum Year FE in five year bins. Standard errors clustered at the 5 digit
occupation level. * p < 0.05, ** p < 0.01, *** p < 0.001. Based on the yearly panel. The reference group is always “no
change”. A training occupation may be split into several successors, each of which is an aggregation of multiple predecessors.
The categories are therefore not mutually exclusive and the sum of the number of segregations, aggregations and pure content
changes is larger than the number of changes.

Table B10: O*NET Items Included in Routine and Non-Routine Task Scores

Task O*NET Item
Non-routine analytic Analyzing data/information
Non-routine analytic Thinking creatively
Non-routine analytic Interpreting information for others
Non-routine interpersonal Establishing and maintaining personal relationships
Non-routine interpersonal Guiding, directing and motivating subordinates
Non-routine interpersonal Coaching/developing others
Routine cognitive Performing administrative activities
Routine manual Controlling machines and processes
Non-routine manual Operating vehicles, mechanized devices, or equipment
O*NET items are as in Acemoglu and Autor (2011) where possible: this means the item has to have a
detailed textual description.
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Table B11: Most and Least Routine-Intense Training Occupations

Training Occupation Broad Occupation

Most Routine-Intense Training Occupations
Confectioner Personal service
Embroiderer Production
Glassmaker Production
Men’s tailor Personal service
Dressmaker Production
Clothes tailor Personal service
Baker Personal service
Basket maker Production
Glass apparatus builder Production
Fluorescent tube glassblower Production

10 Least Routine-Intense Training Occupations
Sports specialist Personal service
Personnel services clerk Business service
Market and social research specialist Business service
Marketing communication clerk Business service
Traffic service clerk Other commercial service
Legal administrative assistant Business service
Railway and road traffic clerk Other commercial service
Driving operations specialist Other commercial service
Tourism and leisure clerk Personal service
Event manager Other commercial service
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Table B12: Most and Least Routine-Intense Training Occupations

Most Routine-Intense Training Occupations Least Routine-Intense Training Occupations

A. Business service
Legal assistant Market and social research specialist
Media designer image and sound Marketing communication clerk
Pharmaceutical clerk Legal administrative assistant

B. IT + scientific service
Material tester Information and telecommunications system clerk
Dairy laboratory technician IT system management clerk
Chemical laboratory technician IT clerk

C. Other commercial service
Brewers and malters Railway and road traffic clerk
Interior decorator Driving operations specialist
Plumber Event manager

D. Personal service
Confectioner Travel agent
Men’s tailor Sports specialist
Clothes tailor Tourism and leisure clerk

E. Production
Embroiderer Information and telecommunications systems electronics technician
Glassmaker IT system electronics technician
Dressmaker Road and traffic engineering specialist
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B.3 Labor market impacts

Table B13: Descriptives of Vocationally Trained Labor Market Entrants, Stacked Sample

Treated Control
Mean SD Median Mean SD Median
(1) (2) (3) (4) (5) (6)

Age 24.05 3.04 24.00 24.06 2.84 24.00
Year of birth 1978 9.46 1979 1980 8.99 1982
Female 0.51 0.50 1.00 0.29 0.45 0.00
Daily wage (euros) 70.85 30.80 71.33 75.68 31.63 76.88
Annual daily wage growth 0.31 2.33 0.06 0.42 11.56 0.05
Years of training 2.80 0.50 2.88 2.91 0.54 2.92
Typical years of training 2.98 0.31 3.00 3.09 0.43 3.00
Annual days employed 267.66 140.43 365.00 267.03 141.23 365.00
Annual labor earnings 19,237 14,152 20,035 20,632 15,017 21,836
Firm size 499.38 2,383.01 39.00 619.32 2,606.82 57.00
N unique workers 33,964 36,168

SIEED sample, dataset stacked in event time as described in Section 4.1, for worker cohort τ = −1. Workers
in the first five years after graduation with a training duration between 1.75 and 4.25 years, restricted to
workers for whom we observe the training occupation and curriculum.

103



Table B14: Log Daily Wage Effects of Curriculum Updates

All Excl. year of labor market entry
Treated × Cohort (1) (2)
-5 -0.33 0.22

(0.85) (0.81)
-4 -0.18 0.03

(0.64) (0.65)
-3 0.44 0.39

(0.70) (0.73)
-2 -0.59 -0.56

(0.58) (0.61)
0 0.44 0.45

(0.60) (0.62)
1 0.06 -0.47

(0.70) (0.68)
2 1.72* 1.62*

(0.73) (0.76)
3 2.00** 1.90**

(0.71) (0.72)
4 2.19** 2.19**

(0.75) (0.76)
5 1.77* 1.91*

(0.84) (0.85)
N Workers × Years 3,112,550 2,446,856
N Workers × Events 855,397 806,147
N Unique Workers 463,030 435,893
N Events 379 379
Stacked difference-in-differences estimates from equation (5). Individuals are included up to five years after
graduation. The first cohort with the new curriculum is cohort 0. Coefficients and standard errors multiplied
by 100. Standard errors clustered by occupation-times-event. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table B15: Descriptives of Occupational Incumbents

Mean SD Median N
(1) (2) (3) (4)

Age 42.28 10.46 42.00 31,599,832
Year of birth 1961 11 1961 31,599,832
Female 0.36 0.48 0.00 31,599,832
Daily wage (euros) 89.55 42.22 90.31 25,145,852
Annual days employed 291.90 132.80 365.00 31,599,832
Annual labor earnings 27,205 20,563 28,286 31,599,832
Firm size 634 2,854 55 27,221,310
Job mobility (year-to-year):

Occupation 0.10 0.30 0.00 31,599,832
Industry 0.10 0.30 0.00 31,599,832
Firm 0.67 0.47 1.00 31,599,832
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C Curriculum change in the United States
We use Classification of Instructional Programs (CIP) data from the National Center for
Education Statistics (NCES) to document the emergence of new educational degree programs
in the United States over 1990–2020. CIP data systematically catalog all post-secondary
degree programs in the United States, classified by field codes. Its first edition dates back
to 1980, with revisions occurring in 1985, 1990, 2000, 2010 and 2020. From 1990 onward,
separate records of newly added programs are available, which we also use here.

Specifically, we construct the share of newly added programs by broad field for each
edition from 1990 onward, cumulating the new degree program counts over time. We then
construct the share of new programs by field as the number of newly added programs over
the total number of programs by field in 2020. The resulting Figure C1 highlights substantial
curriculum change across a wide range of fields.

Figure C2 shows that curriculum change is common across the occupational wage spec-
trum, by crosswalking CIP degree fields to SOC occupation codes using the NCES-provided
crosswalk and combining it with BLS Occupational Employment and Wage Statistics (OEWS)
Survey data. For example, while high-paid occupations like legal professionals and computer
and information sciences have seen a high share of new education programs, so have public
administration and social service professions, engineering technicians, construction trades,
mechanics and repair technicians, and personal and culinary services. There has been less
educational content change in fields like history, and precision production.
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Figure C1: U.S. Curriculum Change by Degree Field, 1990—2020
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Figure plots the share of newly added degree programs by field based on CIP data.
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Figure C2: U.S. Curriculum Change by Occupation, 1990—2020

Computer And Information Sciences And Support Services

Personal And Culinary Services

Education
EngineeringEngineering Technologies/Technicians

Family And Consumer Sciences/Human Sciences

Legal Professions And Studies

Biological And Biomedical Sciences

Homeland Security, Law Enforcement, Firefighting And Related Protective Services
Public Administration And Social Service Professions

Social Sciences

Construction Trades

Mechanic And Repair Technologies/Technicians

Precision Production

Health Professions And Related Clinical Sciences

History

0

.2

.4

.6

.8

1

N
ew

 e
du

ca
tio

n 
pr

og
ra

m
 s

ha
re

 (1
99

0 
to

 2
02

0)

20 30 40 50 60 70 80
Median hourly wage in 2023

Figure plots the share of newly added degree programs by occupations ranked by median hourly wages,
based on CIP data crosswalked to BLS data. The size of the circles reflects 2023 occupational employment
shares.
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D SIEED data construction details
We follow Dauth and Eppelsheimer (2020) in preparing the SIEED data. In particular, we
derive several career indicators such as tenure, days in employment, etc. from the spell data;
we merge the individual spell data with information on employers (location, industry, size)
from the Establishment History Panel (BHP), we deflate wages using the consumer price
index and we impute top-coded wages. Wages are top-coded in the data at the upper limit
for social security contributions. Wages of trainees in the first years of graduation rarely
exceed the contribution limit and thus are hardly ever censored or imputed. We retain the
main employment spell of each individual in case of multiple concurrent spells, where the
main employment spell is the one with the highest wage. The data provide daily information
on workers’ careers. We construct a yearly panel of workers by selecting workers’ employment
status at the 15th of October of each year. Most authors typically rely on the 30th of June
(=mid of year). We use the 15th of October, because vocational training typically starts in
August or September, so that by the 15th of October we are sure to cover all workers who
started or completed vocational training in that year.

In addition to these standard steps from the literature, we derive further indicators from
the data. In particular, we identify the start and end day of workers’ vocational training,
as well as training duration and occupation. We define the start of a workers’ vocational
training as the start day of an employment spell which is marked as a training spell, if
there was no previous vocational training spell and if the workers has not had a completed
vocational training before that spell (identified via the educational information). We identify
the vocational training occupation of a worker by their occupation in that spell. We define
the end of a vocational training of a worker by the end day of a vocational training spell
that is followed by a non-training spell in combination with the worker having a completed
vocational training status (identified via the educational information) in their next spell.

We drop Eastern Germany to avoid breaks in our data over time – East-German em-
ployment spells are available only from 1992 onward. We further drop workers who changed
occupations during their training, as well as workers with unreasonably long or short training
durations (less than 1.75 years, more than 4.25 years).
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E Do curriculum updates impact trainee composition?
Curriculum change is in principle observable to prospective students (and their parents):
curricula are publicly available legal documents, and the Federal Institute for Vocational
Education and Training (BIBB) also communicates training updates, which in recent decades
includes posting these changes on its website. This raises the concern that the quality of
student intake may change as a direct result of curriculum updates, violating parallel trends—
if student quality improves, this could contribute to the positive wage effects we find. On
the other hand, if student quality worsens, our estimates may understate the returns to skill
upgrades contained in the new curricula.

We use two separate datasets (DAZUBI and official apprenticeship market statistics)
containing training occupation-level information on apprenticeships and trainees, obtained
from the BIBB, to consider how trainee observables evolve around curriculum updates. We
use a stacked DiD design as before, comparing apprenticeship position (application) numbers
and trainee observables before and after curriculum updates in training programs which were
updated versus those that were not.40 The estimating equation is

Yjt =
∑

τ

βτ Updatej × Iτ + δj + γt + εjt, (E1)

where Yjt is a training occupation-level outcome for training occupations j in year t. Be-
cause we stack observations as before, j indexes training occupations by curriculum update
(‘event’), and t indexes calendar years by event. τ denotes calendar years relative to the
year of the potential curriculum change event: we normalize τ = 0 as the first calendar year
the curriculum is updated. We control for training occupation dummies and calendar year
dummies, each interacted with event dummies. Standard errors are clustered at the training
occupation by event level, as before. Table E1 shows descriptives of the DAZUBI dataset,
using values in the initial period τ = −5.

We estimate models for West-Germany over 1976–2022. A first set of results reported in
panel A of Figure E1 describes the apprenticeship positions: the number of training contracts,
the share of these terminated before the end of training41, the pass rate among contracts
surviving until the final exam, the share of positions remained unfilled, and the share of
unsuccessful applicants. We find that the number of apprenticeship positions increases for
updated curricula compared to those without updates, but this increase predates the update
itself. We do note a dip in enrollment the year before the curriculum update, but this is
transitory and does not reflect a longer pretrend nor persists after the update. The share of
terminated apprenticeship contracts does not change following curriculum updates: updated
programs have a slightly higher termination rate although these estimates are small and

40We exclude curriculum updates that regrouped several training occupations into several other training
occupations without a clear correspondence between the previous and succeeding training occupations.

41Such terminations occur when students choose to dis-enroll (and potentially re-enroll in a different pro-
gram).
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never statistically significant. Further, there is a very small increase in the pass rate for
students enrolling in updated training programs, amounting to less than 2 percentage points
(relative to a mean of 87%, shown in Table E1). We also do not observe changes in the
share of unfilled apprenticeship positions (labeled ‘excess supply of positions’ in Figure E1)
or unsuccessful apprenticeship applications (labeled ‘excess demand by apprentices’) around
curriculum updates that would hint at altered interest in training occupations following an
update.

Panel B of Figure E1 considers changes in the composition of trainees by gender, age, and
education. Overall, we find little evidence that curriculum updates coincide with changes
in these trainee characteristics. The gender and age composition of trainees in updated
programs evolves in the same way as in programs without updates. Moreover, curriculum
updates do not coincide with changes in the educational composition of trainees’ high school
diploma42: we consider the share of students with an upper school track (the highest high
school diploma), a middle school track, a lower school track, and no high school diploma,
finding no discernible trend changes for any of these. Further, Figure E2 shows estimates sep-
arately for production and service training occupations, showing these findings hold within
these subsamples also.

All in all, we do not find evidence to support changes in worker composition concurrent
with curriculum change. This bolsters confidence that the documented wage returns from
curriculum reform are the result of skill upgrading rather than reflecting a changing worker
worker selection into updated training programs.43

42Because of changes in the educational classification, we estimate these effects separately over 1976–2006
and 2007–2022.

43Along with no changes in trainee composition, we also do not find any changes in total employment or
wagebills for training occupations around curriculum update events, using SIAB data. Estimates for these
models are shown in Figure A15, highlighting that training occupations with updated curricula are on
similar employment and wagebill trajectories as training occupations without curriculum updates over the
same time period.
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Table E1: Descriptives on Apprenticeship Positions and Trainee Composition

Mean SD N

A. Apprenticeship positions, supply, and demand
Log(new training contracts) 5.79 2.04 33,672
% Contracts terminated 20.62 13.85 32,706
% Final exams passed 89.37 7.90 7,466
% Excess supply of positions 4.19 5.19 7,869
% Excess demand by apprentices 10.86 11.12 7,869

B. Apprenticeship composition
% Female 32.95 34.38 22,534
Average age in years 19.46 1.09 10,338
% Upper school track (1976–2006) 16.63 20.74 17,631
% Upper school track (2007–2022) 21.15 23.33 8,695
% Middle school track (1976–2006) 31.31 17.29 17,631
% Middle school track (2007–2022) 35.01 14.95 8,695
% Lower school track (1976–2006) 34.62 23.78 17,631
% Lower school track (2007–2022) 38.52 25.76 8,695
% No school (1976–2006) 1.95 3.34 17,631
% No school (2007–2022) 2.90 3.33 8,695

Mean and standard deviation in the initial year τ = −5. N shows the
number of observations included in the respective regressions: this varies
across outcomes due to missing values.

112



Figure E1: Apprenticeship Positions and Trainee Composition Before and After
Curriculum Updates
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Stacked difference-in-differences estimates of curriculum updates on apprenticeship positions and trainee composition,
comparing occupations with curriculum updates to occupations without updates. Based on 317 curriculum update events
(pure content changes, aggregations without simultaneous segregations, and segregations without simultaneous aggregations)
over 1976–2022, West Germany only, N = 57, 745. The first year with the new curriculum is 0. Models absorb
occupation-by-event dummies, calendar year-by-event dummies and time-to-event dummies. Standard errors are clustered at
the curriculum level. Excess supply of positions defined as the number of unfilled positions among all offered positions in %.
Excess demand defined as the number of rejected applications by students over the number of all applications. Education
shares 1976–2006 based on the previously attended school type, including both general and vocational schools. Education
shares 2007–2022 based on school-leaving certificate (excluding vocational schools). Excess supply and excess demand
available from 2007 onward; % final exams passed available from 2010 onward; % female available from 1993 onward; average
age in years available from 2007 onward.
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Figure E2: Apprenticeship Number and Composition Before and After Curriculum
Updates – Production versus Service Occupations
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Stacked difference-in-differences estimates of curriculum updates on apprenticeship positions and composition comparing
occupations with curriculum updates to occupations without updates, over 1976–2022. Based on 223 updating events (pure
content changes, aggregations without simultaneous segregations, and segregations without simultaneous aggregations) in
production occupations (N=39,180) and 94 updating events in service occupations (N=18,565). The first year with the new
curriculum is 0. Models specification in equation (E1). Standard errors are clustered at the curriculum level. Excess supply of
positions defined as the number of unfilled positions among all offered positions in %. Excess demand defined as the number
of rejected applications by students over the number of all applications. Education shares 1976–2006 based on the previously
attended school type, including both general and vocational schools. Education shares 2007–2022 based on school-leaving
certificate (excluding vocational schools). Excess supply and excess demand available from 2007 onward; % final exams passed
available from 2010 onward; % female available from 1993 onward; average age in years available from 2007 onward.
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